Previous |  Up |  Next

Article

Title: Periodic solutions for systems with nonsmooth and partially coercive potential (English)
Author: Filippakis, Michael E.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 3
Year: 2006
Pages: 225-232
Summary lang: English
.
Category: math
.
Summary: In this paper we consider nonlinear periodic systems driven by the one-dimensional $p$-Laplacian and having a nonsmooth locally Lipschitz potential. Using a variational approach based on the nonsmooth Critical Point Theory, we establish the existence of a solution. We also prove a multiplicity result based on a nonsmooth extension of the result of Brezis-Nirenberg (Brezis, H., Nirenberg, L., Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939–963.) due to Kandilakis-Kourogenis-Papageorgiou (Kandilakis, D., Kourogenis, N., Papageorgiou, N., Two nontrivial critical point for nosmooth functional via local linking and applications, J. Global Optim., to appear.). (English)
Keyword: locally linking Lipschitz function
Keyword: generalized subdifferential
Keyword: nonsmooth critical point theory
Keyword: nonsmooth Palais-Smale condition
Keyword: $p$-Laplacian
Keyword: periodic system
MSC: 34A60
MSC: 34B15
MSC: 34C25
MSC: 47J30
MSC: 47N20
idZBL: Zbl 1164.34319
idMR: MR2260380
.
Date available: 2008-06-06T22:48:08Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108000
.
Reference: [1] Adams R.: Sobolev Spaces.Pure and Applied Mathematics 65, Academic Press, New York/London 1975. Zbl 0314.46030, MR 0450957
Reference: [2] Berger M. Schechter M.: On the solvability of semilinear gradient operator equations.Adv. Math. 25 (1977), 97–132. MR 0500336
Reference: [3] Brezis H., Nirenberg L.: Remarks on finding critical points.Comm. Pure Appl. Math. 44 (1991), 939–963. Zbl 0751.58006, MR 1127041
Reference: [4] Chang K. C.: Variational methods for nondifferentiable functionals and their applications to partial differential equations.J. Math. Anal. Appl. 80 (1981), 102–129. MR 0614246
Reference: [5] Clarke F.: Optimization and Nonsmooth Analysis.Wiley, New York 1983. Zbl 0582.49001, MR 0709590
Reference: [6] Dang H., Oppenheimer S.: Existence and uniqueness results for some nonlinear boundary value problems.J. Math. Anal. Appl. 198, (1996) 35–48. MR 1373525
Reference: [7] del Pino M., Manasevich R., Murua A.: Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE.Nonlinear Anal. 18, (1992) 79–92. MR 1138643
Reference: [8] Fabry C., Fayyad D.: Periodic solutions of second order differential equations with a $p$-Laplacian and asymetric nonlinearities.Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. MR 1310080
Reference: [9] Gasinski L., Papageorgiou N. S.: A multiplicity result for nonlinear second order periodic equations with nonsmooth potential.Bull. Belg. Math. Soc. Simon Stevin 9 (2002a), 245–258. Zbl 1056.47056, MR 2017079
Reference: [10] Guo Z.: Boundary value problems for a class of quasilinear ordinary differential equations.Differential Integral Equations 6 (1993), 705–719. MR 1202567
Reference: [11] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Volume I: Theory.Kluwer, Dordrecht, The Netherlands 1997. Zbl 0887.47001, MR 1485775
Reference: [12] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Volume II: Applications.Kluwer, Dordrecht, The Netherlands 2000. Zbl 0943.47037, MR 1741926
Reference: [13] Kandilakis D., Kourogenis N., Papageorgiou N.: Two nontrivial critical point for nosmooth functional via local linking and applications.J. Global Optim., to appear. MR 2210278
Reference: [14] Kourogenis N., Papageorgiou N. S.: Nonsmooth critical point theory and nonlinear elliptic equations at resonance.J. Austral. Math. Soc. Ser. A 69 (2000), 245–271. Zbl 0999.58006, MR 1775181
Reference: [15] Kourogenis N., Papageorgiou N. S.: A weak nonsmooth Palais-Smale condition and coercivity.Rend. Circ. Mat. Palermo 49 (2000), 521–526. Zbl 1225.49021, MR 1809092
Reference: [16] Manasevich R., Mawhin J.: Periodic solutions for nonlinear systems with $p$-Laplacian-like operators.J. Differential Equations 145 (1998), 367–393. MR 1621038
Reference: [17] Mawhin J., Willem M.: Critical Point Theory and Hamiltonian Systems.Vol. 74 of Applied Mathematics Sciences, Springer-Verlag, New York 1989. Zbl 0676.58017, MR 0982267
Reference: [18] Tang C. L., Wu X. P.: Periodic solutions for second order systems with not uniformly coercive potential.J. Math. Anal. Appl. 259 (2001), 386–397. Zbl 0999.34039, MR 1842066
.

Files

Files Size Format View
ArchMathRetro_042-2006-3_3.pdf 218.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo