Title:
|
On three equivalences concerning Ponomarev-systems (English) |
Author:
|
Ge, Ying |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
42 |
Issue:
|
3 |
Year:
|
2006 |
Pages:
|
239-246 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\lbrace {\mathcal P}_n\rbrace $ be a sequence of covers of a space $X$ such that $\lbrace st(x,{\mathcal P}_n)\rbrace $ is a network at $x$ in $X$ for each $x\in X$. For each $n\in \mathbb N$, let ${\mathcal P}_n=\lbrace P_{\beta }:\beta \in \Lambda _n\rbrace $ and $\Lambda _ n$ be endowed the discrete topology. Put $M=\lbrace b=(\beta _n)\in \Pi _{n\in \mathbb N}\Lambda _ n: \lbrace P_{\beta _n}\rbrace $ forms a network at some point $x_b\ in \ X\rbrace $ and $f:M\longrightarrow X$ by choosing $f(b)=x_b$ for each $b\in M$. In this paper, we prove that $f$ is a sequentially-quotient (resp. sequence-covering, compact-covering) mapping if and only if each $\mathcal {P}_n$ is a $cs^*$-cover (resp. $fcs$-cover, $cfp$-cover) of $X$. As a consequence of this result, we prove that $f$ is a sequentially-quotient, $s$-mapping if and only if it is a sequence-covering, $s$-mapping, where “$s$” can not be omitted. (English) |
Keyword:
|
Ponomarev-system |
Keyword:
|
point-star network |
Keyword:
|
$cs^*$-(resp. $fcs$- |
Keyword:
|
$cfp$-)cover |
Keyword:
|
sequentially-quotient (resp. sequence-covering |
Keyword:
|
compact-covering) mapping |
MSC:
|
54E40 |
idZBL:
|
Zbl 1164.54363 |
idMR:
|
MR2260382 |
. |
Date available:
|
2008-06-06T22:48:13Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/108002 |
. |
Reference:
|
[1] Boone J. R., and Siwiec F.: Sequentially quotient mappings.Czechoslovak Math. J. 26 (1976), 174–182. MR 0402689 |
Reference:
|
[2] Ge Y.: On quotient compact images of locally separable metric spaces.Topology Proceedings 276 (2003), 351–560. MR 2048944 |
Reference:
|
[3] Ge Y., Gu J.: On $\pi $-images of separable metric spaces.Mathematical Sciences 10 (2004), 65–71. Zbl 1104.54014, MR 2127483 |
Reference:
|
[4] Gruenhage G., Michael E., Tanaka Y.: Spaces determined by point-countable covers.Pacific J. Math. 113 (1984), 303–332. Zbl 0561.54016, MR 0749538 |
Reference:
|
[5] Ikeda Y., Liu C., Tanaka Y.: Quotient compact images of metric spaces and related matters.Topology Appl. 122 (2002), 237–252. Zbl 0994.54015, MR 1919303 |
Reference:
|
[6] Lin S.: Point-countable covers and sequence-covering mappings.Chinese Science Press, Beijing, 2002. (Chinese) Zbl 1004.54001, MR 1939779 |
Reference:
|
[7] Lin S., Yan P.: Notes on $cfp$-covers.Comment. Math. Univ. Carolin. 44 (2003), 295–306. Zbl 1100.54021, MR 2026164 |
Reference:
|
[8] Michael E.: $\aleph _0$-spaces.J. Math. Mech. 15 (1966), 983–1002. MR 0206907 |
Reference:
|
[9] Ponomarev V. I.: Axiom of countability and continuous mappings.Bull. Pol. Acad. Math. 8 (1960), 127–133. MR 0116314 |
Reference:
|
[10] Tanaka Y., Ge Y.: Around quotient compact images of metric spaces and symmetric spaces.Houston J. Math. 32 (2006), 99–117. Zbl 1102.54034, MR 2202355 |
. |