| Title: | On modified Meyer-König and Zeller operators of functions of two variables (English) | 
| Author: | Rempulska, Lucyna | 
| Author: | Skorupka, Mariola | 
| Language: | English | 
| Journal: | Archivum Mathematicum | 
| ISSN: | 0044-8753 (print) | 
| ISSN: | 1212-5059 (online) | 
| Volume: | 42 | 
| Issue: | 3 | 
| Year: | 2006 | 
| Pages: | 273-284 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | This paper is motivated by Kirov results on generalized Bernstein polynomials given in (Kirov, G. H., A generalization of the Bernstein polynomials, Math. Balk. New Ser. bf 6 (1992), 147–153.). We introduce certain modified Meyer-König and Zeller operators in the space of differentiable functions of two variables and we study approximation properties for them. Some approximation properties of the Meyer-König and Zeller operators of differentiable functions of one variable are given in (Rempulska, L., Tomczak, K., On certain modified Meyer-König and Zeller operators, Grant PB-43-71/2004.) and (Rempulska, L., Skorupka, M., On strong approximation by modified Meyer-König and Zeller operators, Tamkang J. Math. (in print).). (English) | 
| Keyword: | Meyer-König and Zeller operator | 
| Keyword: | function of two variables | 
| Keyword: | approximation theorem | 
| MSC: | 41A35 | 
| MSC: | 41A36 | 
| idZBL: | Zbl 1164.41338 | 
| idMR: | MR2260387 | 
| . | 
| Date available: | 2008-06-06T22:48:28Z | 
| Last updated: | 2012-05-10 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/108007 | 
| . | 
| Reference: | [1] Abel U.: The moments for the Meyer-König and Zeller operators.J. Approx. Theory 82 (1995), 352–361.  Zbl 0828.41009, MR 1348726 | 
| Reference: | [2] Alkemade J. A. H.: The second moment for the Meyer-König and Zeller operators.J. Approx. Theory 40 (1984), 261–273.  Zbl 0575.41013, MR 0736073 | 
| Reference: | [3] Abel U., Della Vecchia B.: Enhanced asymptotic approximation by linear operators.Facta Univ., Ser. Math. Inf. 19 (2004), 37–51. | 
| Reference: | [4] Becker M., Nessel R. J.: A global approximation theorem for Meyer-König and Zeller operator.Math. Z. 160 (1978), 195–206.  MR 0510745 | 
| Reference: | [5] Chen W.: On the integral type Meyer-König and Zeller operators.Approx. Theory Appl. 2(3) (1986), 7–18.  Zbl 0613.41021, MR 0877624 | 
| Reference: | [6] De Vore R. A.: The Approximation of Continuous Functions by Positive Linear operators.New York, 1972. | 
| Reference: | [7] Fichtenholz G. M.: Calculus.Vol. 1, Warsaw, 1964. | 
| Reference: | [8] Guo S.: On the rate of convergence of integrated Meyer-König and Zeller operators for functions of bounded variation.J. Approx. Theory 56 (1989), 245–255.  MR 0990339 | 
| Reference: | [9] Gupta V.: A note on Meyer-König and Zeller operators for functions of bounded variation.Approx. Theory Appl. 18(3) (2002), 99–102.  Zbl 1073.41506, MR 1942355 | 
| Reference: | [10] Hölzle G. E.: On the degree of approximation of continuous functions by a class of sequences of linear positive operators.Indag. Math. 42 (1980), 171–181.  Zbl 0427.41013, MR 0577572 | 
| Reference: | [11] Kirov G. H.: A generalization of the Bernstein polynomials.Math. Balk. New Ser. bf 6 (1992), 147–153.  Zbl 0838.41017, MR 1182946 | 
| Reference: | [12] Kirov G. H., Popova L.: A generalization of the linear positive operators.Math. Balk. New Ser. 7 (1993), 149–162.  Zbl 0833.41016, MR 1270375 | 
| Reference: | [13] Lupas A.: Approximation properties of the $M_{n}$-operators.Aequationes Math. 5 (1970), 19–37.  MR 0279495 | 
| Reference: | [14] Meyer-König W., Zeller K.: Bernsteinche Potenzreihen.Studia Math. 19 (1960), 89–94.  MR 0111965 | 
| Reference: | [15] Rempulska L., Tomczak K.: On certain modified Meyer-König and Zeller operators.Grant PB-43-71/2004.  Zbl 1107.41018 | 
| Reference: | [16] Rempulska L., Skorupka M.: On strong approximation by modified Meyer-König and Zeller operators.Tamkang J. Math. (in print).  Zbl 1119.41022, MR 2252622 | 
| Reference: | [17] Timan A. F.: Theory of Approximation of Functions of a Real Variable.Moscow, 1960 (Russian).   MR 0117478 | 
| . |