Title:
|
On modified Meyer-König and Zeller operators of functions of two variables (English) |
Author:
|
Rempulska, Lucyna |
Author:
|
Skorupka, Mariola |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
42 |
Issue:
|
3 |
Year:
|
2006 |
Pages:
|
273-284 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper is motivated by Kirov results on generalized Bernstein polynomials given in (Kirov, G. H., A generalization of the Bernstein polynomials, Math. Balk. New Ser. bf 6 (1992), 147–153.). We introduce certain modified Meyer-König and Zeller operators in the space of differentiable functions of two variables and we study approximation properties for them. Some approximation properties of the Meyer-König and Zeller operators of differentiable functions of one variable are given in (Rempulska, L., Tomczak, K., On certain modified Meyer-König and Zeller operators, Grant PB-43-71/2004.) and (Rempulska, L., Skorupka, M., On strong approximation by modified Meyer-König and Zeller operators, Tamkang J. Math. (in print).). (English) |
Keyword:
|
Meyer-König and Zeller operator |
Keyword:
|
function of two variables |
Keyword:
|
approximation theorem |
MSC:
|
41A35 |
MSC:
|
41A36 |
idZBL:
|
Zbl 1164.41338 |
idMR:
|
MR2260387 |
. |
Date available:
|
2008-06-06T22:48:28Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/108007 |
. |
Reference:
|
[1] Abel U.: The moments for the Meyer-König and Zeller operators.J. Approx. Theory 82 (1995), 352–361. Zbl 0828.41009, MR 1348726 |
Reference:
|
[2] Alkemade J. A. H.: The second moment for the Meyer-König and Zeller operators.J. Approx. Theory 40 (1984), 261–273. Zbl 0575.41013, MR 0736073 |
Reference:
|
[3] Abel U., Della Vecchia B.: Enhanced asymptotic approximation by linear operators.Facta Univ., Ser. Math. Inf. 19 (2004), 37–51. |
Reference:
|
[4] Becker M., Nessel R. J.: A global approximation theorem for Meyer-König and Zeller operator.Math. Z. 160 (1978), 195–206. MR 0510745 |
Reference:
|
[5] Chen W.: On the integral type Meyer-König and Zeller operators.Approx. Theory Appl. 2(3) (1986), 7–18. Zbl 0613.41021, MR 0877624 |
Reference:
|
[6] De Vore R. A.: The Approximation of Continuous Functions by Positive Linear operators.New York, 1972. |
Reference:
|
[7] Fichtenholz G. M.: Calculus.Vol. 1, Warsaw, 1964. |
Reference:
|
[8] Guo S.: On the rate of convergence of integrated Meyer-König and Zeller operators for functions of bounded variation.J. Approx. Theory 56 (1989), 245–255. MR 0990339 |
Reference:
|
[9] Gupta V.: A note on Meyer-König and Zeller operators for functions of bounded variation.Approx. Theory Appl. 18(3) (2002), 99–102. Zbl 1073.41506, MR 1942355 |
Reference:
|
[10] Hölzle G. E.: On the degree of approximation of continuous functions by a class of sequences of linear positive operators.Indag. Math. 42 (1980), 171–181. Zbl 0427.41013, MR 0577572 |
Reference:
|
[11] Kirov G. H.: A generalization of the Bernstein polynomials.Math. Balk. New Ser. bf 6 (1992), 147–153. Zbl 0838.41017, MR 1182946 |
Reference:
|
[12] Kirov G. H., Popova L.: A generalization of the linear positive operators.Math. Balk. New Ser. 7 (1993), 149–162. Zbl 0833.41016, MR 1270375 |
Reference:
|
[13] Lupas A.: Approximation properties of the $M_{n}$-operators.Aequationes Math. 5 (1970), 19–37. MR 0279495 |
Reference:
|
[14] Meyer-König W., Zeller K.: Bernsteinche Potenzreihen.Studia Math. 19 (1960), 89–94. MR 0111965 |
Reference:
|
[15] Rempulska L., Tomczak K.: On certain modified Meyer-König and Zeller operators.Grant PB-43-71/2004. Zbl 1107.41018 |
Reference:
|
[16] Rempulska L., Skorupka M.: On strong approximation by modified Meyer-König and Zeller operators.Tamkang J. Math. (in print). Zbl 1119.41022, MR 2252622 |
Reference:
|
[17] Timan A. F.: Theory of Approximation of Functions of a Real Variable.Moscow, 1960 (Russian). MR 0117478 |
. |