Previous |  Up |  Next

Article

Title: On modified Meyer-König and Zeller operators of functions of two variables (English)
Author: Rempulska, Lucyna
Author: Skorupka, Mariola
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 3
Year: 2006
Pages: 273-284
Summary lang: English
.
Category: math
.
Summary: This paper is motivated by Kirov results on generalized Bernstein polynomials given in (Kirov, G. H., A generalization of the Bernstein polynomials, Math. Balk. New Ser. bf 6 (1992), 147–153.). We introduce certain modified Meyer-König and Zeller operators in the space of differentiable functions of two variables and we study approximation properties for them. Some approximation properties of the Meyer-König and Zeller operators of differentiable functions of one variable are given in (Rempulska, L., Tomczak, K., On certain modified Meyer-König and Zeller operators, Grant PB-43-71/2004.) and (Rempulska, L., Skorupka, M., On strong approximation by modified Meyer-König and Zeller operators, Tamkang J. Math. (in print).). (English)
Keyword: Meyer-König and Zeller operator
Keyword: function of two variables
Keyword: approximation theorem
MSC: 41A35
MSC: 41A36
idZBL: Zbl 1164.41338
idMR: MR2260387
.
Date available: 2008-06-06T22:48:28Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108007
.
Reference: [1] Abel U.: The moments for the Meyer-König and Zeller operators.J. Approx. Theory 82 (1995), 352–361. Zbl 0828.41009, MR 1348726
Reference: [2] Alkemade J. A. H.: The second moment for the Meyer-König and Zeller operators.J. Approx. Theory 40 (1984), 261–273. Zbl 0575.41013, MR 0736073
Reference: [3] Abel U., Della Vecchia B.: Enhanced asymptotic approximation by linear operators.Facta Univ., Ser. Math. Inf. 19 (2004), 37–51.
Reference: [4] Becker M., Nessel R. J.: A global approximation theorem for Meyer-König and Zeller operator.Math. Z. 160 (1978), 195–206. MR 0510745
Reference: [5] Chen W.: On the integral type Meyer-König and Zeller operators.Approx. Theory Appl. 2(3) (1986), 7–18. Zbl 0613.41021, MR 0877624
Reference: [6] De Vore R. A.: The Approximation of Continuous Functions by Positive Linear operators.New York, 1972.
Reference: [7] Fichtenholz G. M.: Calculus.Vol. 1, Warsaw, 1964.
Reference: [8] Guo S.: On the rate of convergence of integrated Meyer-König and Zeller operators for functions of bounded variation.J. Approx. Theory 56 (1989), 245–255. MR 0990339
Reference: [9] Gupta V.: A note on Meyer-König and Zeller operators for functions of bounded variation.Approx. Theory Appl. 18(3) (2002), 99–102. Zbl 1073.41506, MR 1942355
Reference: [10] Hölzle G. E.: On the degree of approximation of continuous functions by a class of sequences of linear positive operators.Indag. Math. 42 (1980), 171–181. Zbl 0427.41013, MR 0577572
Reference: [11] Kirov G. H.: A generalization of the Bernstein polynomials.Math. Balk. New Ser. bf 6 (1992), 147–153. Zbl 0838.41017, MR 1182946
Reference: [12] Kirov G. H., Popova L.: A generalization of the linear positive operators.Math. Balk. New Ser. 7 (1993), 149–162. Zbl 0833.41016, MR 1270375
Reference: [13] Lupas A.: Approximation properties of the $M_{n}$-operators.Aequationes Math. 5 (1970), 19–37. MR 0279495
Reference: [14] Meyer-König W., Zeller K.: Bernsteinche Potenzreihen.Studia Math. 19 (1960), 89–94. MR 0111965
Reference: [15] Rempulska L., Tomczak K.: On certain modified Meyer-König and Zeller operators.Grant PB-43-71/2004. Zbl 1107.41018
Reference: [16] Rempulska L., Skorupka M.: On strong approximation by modified Meyer-König and Zeller operators.Tamkang J. Math. (in print). Zbl 1119.41022, MR 2252622
Reference: [17] Timan A. F.: Theory of Approximation of Functions of a Real Variable.Moscow, 1960 (Russian). MR 0117478
.

Files

Files Size Format View
ArchMathRetro_042-2006-3_10.pdf 228.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo