Previous |  Up |  Next

Article

Title: The Srní lectures on non-integrable geometries with torsion (English)
Author: Agricola, Ilka
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 5
Year: 2006
Pages: 5-84
Summary lang: English
.
Category: math
.
Summary: This review article intends to introduce the reader to non-integrable geometric structures on Riemannian manifolds and invariant metric connections with torsion, and to discuss recent aspects of mathematical physics—in particular superstring theory—where these naturally appear. Connections with skew-symmetric torsion are exhibited as one of the main tools to understand non-integrable geometries. To this aim a a series of key examples is presented and successively dealt with using the notions of intrinsic torsion and characteristic connection of a $G$-structure as unifying principles. The General Holonomy Principle bridges over to parallel objects, thus motivating the discussion of geometric stabilizers, with emphasis on spinors and differential forms. Several Weitzenböck formulas for Dirac operators associated with torsion connections enable us to discuss spinorial field equations, such as those governing the common sector of type II superstring theory. They also provide the link to Kostant’s cubic Dirac operator. (English)
Keyword: metric connection with torsion
Keyword: intrinsic torsion
Keyword: $G$-structure
Keyword: characteristic connection
Keyword: superstring theory
Keyword: Strominger model
Keyword: parallel spinor
Keyword: non-integrable geometry
Keyword: integrable geometry
Keyword: Berger’s holonomy theorem
Keyword: naturally reductive space
Keyword: hyper-Kähler manifold with torsion
Keyword: almost metric contact structure
Keyword: $G_2$-manifold
Keyword: $(7)$-manifold
Keyword: $(3)$-structure
Keyword: $3$-Sasakian manifold
MSC: 53C10
MSC: 53C25
MSC: 53C27
MSC: 53C29
MSC: 53D15
MSC: 58J60
MSC: 81T30
idZBL: Zbl 1164.53300
idMR: MR2322400
.
Date available: 2008-06-06T22:49:06Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108020
.
Reference: [Ab84] E. Abbena: An example of an almost Kähler manifold which is not Kählerian.Bolletino U. M. I. (6) 3 A (1984), 383–392. Zbl 0559.53023, MR 0769169
Reference: [AGS00] E. Abbena S. Gabiero S. Salamon: Almost Hermitian geometry on six dimensional nilmanifolds.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) Vol. XXX (2001), 147–170. MR 1882028
Reference: [Agr02] I. Agricola: Connexions sur les espaces homogènes naturellement réductifs et leurs opérateurs de Dirac.C. R. Acad. Sci. Paris Sér. I 335 (2002), 43–46. Zbl 1010.53024, MR 1920993
Reference: [Agr03] I. Agricola: Connections on naturally reductive spaces, their Dirac operator and homogeneous models in string theory.Comm. Math. Phys. 232 (2003), 535–563. Zbl 1032.53041, MR 1952476
Reference: [ACF05] I. Agricola S. Chiossi A. Fino: Solvmanifolds with integrable and non-integrable $G_2$-structures.math.DG/0510300, to appear in Differential Geom. Appl. MR 2311729
Reference: [AF01] I. Agricola, Th. Friedrich: Global Analysis – Differential forms in Calculus, Geometry and Physics.Graduate Studies in Mathematics, Publications of the AMS 2002, Providence, Rhode Island 2002. MR 1998826
Reference: [AF03] I. Agricola, Th. Friedrich: Killing spinors in supergravity with $4$-fluxes.Classical Quantum Gravity 20 (2003), 4707–4717. Zbl 1045.83045, MR 2019441
Reference: [AF04a] I. Agricola, Th. Friedrich: On the holonomy of connections with skew-symmetric torsion.Math. Ann. 328 (2004), 711–748. Zbl 1055.53031, MR 2047649
Reference: [AF04b] I. Agricola, Th. Friedrich: The Casimir operator of a metric connection with totally skew-symmetric torsion.J. Geom. Phys. 50 (2004), 188–204. MR 2078225
Reference: [AF05] I. Agricola, Th. Friedrich: Geometric structures of vectorial type.math.DG/0509147, to appear in J. Geom. Phys. Zbl 1106.53033, MR 2252869
Reference: [AFNP05] I. Agricola T. Friedrich P.-A. Nagy C. Puhle: On the Ricci tensor in the common sector of type II string theory.Classical Quantum Gravity 22 (2005), 2569–2577. MR 2153698
Reference: [AT04] I. Agricola, Chr. Thier: The geodesics of metric connections with vectorial torsion.Ann. Global Anal. Geom. 26 (2004), 321–332. Zbl 1130.53029, MR 2103403
Reference: [Ale68] D. V. Alekseevski: Riemannian spaces with exceptional holonomy groups.Func. Anal. Prilozh. 2 (1968), 1–10. MR 0231313
Reference: [AMP98] D. V. Alekseevsky S. Marchiafava M. Pontecorvo: Compatible almost complex structures on quaternion Kähler manifolds.Ann. Global Anal. Geom. 16 (1998), 419–444. MR 1648844
Reference: [AC05] D. V. Alekseevsky V. Cortés: Classification of pseudo-Riemannian symmetric spaces of quaternionic Kähler type.Vinberg, Ernest (ed.), Lie groups and invariant theory. Providence, RI: American Mathematical Society 213 (AMS). Translations. Series 2. Adv. Math. Sci. 56 (2005), 33–62. MR 2140713
Reference: [AG86] V. Aleksiev G. Ganchev: On the classification of the almost contact metric manifolds.Mathematics and education in mathematics, Proc. 15th Spring Conf., Sunny Beach/Bulg. 1986, 155–161. MR 0872914
Reference: [Ale03] B. Alexandrov: $Sp(n)U(1)$-connections with parallel totally skew-symmetric torsion.J. Geom. Phys. 57 (2006), 323–337, math.DG/0311248. Zbl 1107.53012, MR 2265474
Reference: [Ale04] B. Alexandrov: On weak holonomy.Math. Scand. 96 (2005), 169–189. Zbl 1079.53071, MR 2153409
Reference: [AFS05] B. Alexandrov, Th. Friedrich N. Schoemann: Almost Hermitian $6$-manifolds revisited.J. Geom. Phys. 53 (2005), 1–30. MR 2102047
Reference: [AI00] B. Alexandrov S. Ivanov: Dirac operators on Hermitian spin surfaces.Ann. Global Anal. Geom. 18 (2000), 529–539. MR 1800590
Reference: [Ali01] T. Ali: $M$-theory on seven manifolds with $G$-fluxes.hep-th/0111220.
Reference: [AS53] W. Ambrose, I. M. Singer: A theorem on holonomy.Trans. Amer. Math. Soc. 75 (1953), 428–443. Zbl 0052.18002, MR 0063739
Reference: [AS58] W. Ambrose, I. M. Singer: On homogeneous Riemannian manifolds.Duke Math. J. 25 (1958), 647–669. Zbl 0134.17802, MR 0102842
Reference: [ADM01] V. Apostolov T. Drăghici A. Moroianu: A splitting theorem for Kähler manifolds whose Ricci tensors have constant eigenvalues.Internat. J. Math. 12 (2001), 769–789. MR 1850671
Reference: [AAD02] V. Apostolov J. Armstrong T. Drăghici: Local rigidity of certain classes of almost Kähler $4$-manifolds.Ann. Global Anal. Geom. 21 (2002), 151–176. MR 1894944
Reference: [Arm98] J. Armstrong: Almost Kähler geometry.Ph. D. Thesis, Oxford University, 1998.
Reference: [AS77] M. Atiyah, W. Schmid: A geometric construction for the discrete series for semisimple Lie groups.Invent. Math. 42 (1977), 1–62. MR 0463358
Reference: [AW01] M. Atiyah, E. Witten: $M$-theory dynamics on a manifold of $G_2$ holonomy.Adv. Theor. Math. Phys. 6 (2002), 1–106. Zbl 1033.81065, MR 1992874
Reference: [Atr75] J. E. D’Atri: Geodesic spheres and symmetries in naturally reductive spaces.Michigan Math. J. 22 (1975), 71–76. MR 0372786
Reference: [AZ79] J. E. D’Atri, W. Ziller: Naturally reductive metrics and Einstein metrics on compact Lie groups.Mem. Amer. Math. Soc. 18 (1979). MR 0519928
Reference: [Bär93] Chr. Bär: Real Killing spinors and holonomy.Comm. Math. Phys. 154 (1993), 509–521. MR 1224089
Reference: [BS04] B. Banos A. F. Swann: Potentials for hyper-Kähler metrics with torsion.Classical Quantum Gravity 21 (2004), 3127–3135. MR 2072130
Reference: [BFGK91] H. Baum, Th. Friedrich R. Grunewald I. Kath: Twistors and Killing spinors on Riemannian manifolds.Teubner-Texte zur Mathematik, Band 124, Teubner-Verlag Stuttgart/Leipzig, 1991. MR 1164864
Reference: [BJ03] K. Behrndt C. Jeschek: Fluxes in $M$-theory on $7$-manifolds and $G$-structures.hep-th/0302047.
Reference: [Bel00] F. A. Belgun: On the metric structure of non-Kähler complex surfaces.Math. Ann. 317 (2000), 1–40. Zbl 0988.32017, MR 1760667
Reference: [BM01] F. A. Belgun, A. Moroianu: Nearly Kähler $6$-manifolds with reduced holonomy.Ann. Global Anal. Geom. 19 (2001), 307–319. Zbl 0992.53037, MR 1842572
Reference: [Ber55] M. Berger: Sur les groupes d’holonomie des variétés à connexion affine et des variétés riemanniennes.Bull. Soc. Math. France 83 (1955), 279–330. MR 0079806
Reference: [Ber61] M. Berger: Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive.Ann. Sc. Norm. Sup. Pisa 15 (1961), 179–246. Zbl 0101.14201, MR 0133083
Reference: [BTVh95] J. Berndt F. Tricerri L. Vanhecke: Generalized Heisenberg groups and Damek-Ricci harmonic spaces.LNM 1598, Springer, 1995. MR 1340192
Reference: [Bes87] A. Besse: Einstein manifolds.Ergebnisse der Mathematik und ihrer Grenzgebiete Bd. 10, Springer-Verlag Berlin-Heidelberg 1987. Zbl 0613.53001, MR 0867684
Reference: [BDS01] A. Bilal J.-P. Derendinger, K. Sfetsos: Weak $G_2$-holonomy from self-duality, flux and supersymmetry.Nuclear Phys. B 628 (2002), 112–132. MR 1901225
Reference: [Bis89] J. M. Bismut: A local index theorem for non-Kählerian manifolds.Math. Ann. 284 (1989), 681–699. MR 1006380
Reference: [Bla76] D. E. Blair: Contact manifolds in Riemannian geometry.LNM 509 (1976), Springer. Zbl 0319.53026, MR 0467588
Reference: [Bla02] D. E. Blair: Riemannian geometry of contact and symplectic manifolds.Progress in Mathematics vol. 203, Birkhäuser, 2002. Zbl 1011.53001, MR 1874240
Reference: [BlVh87] D. E. Blair, L. Vanhecke: New characterization of $\varphi $-symmetric spaces.Kodai Math. J. 10 (1987), 102–107. MR 0879387
Reference: [Bob06] M. Bobieński: The topological obstructions to the existence of an irreducible $\mathrm{SO}(3)$-structure on a five manifold.math.DG/0601066.
Reference: [BN05] M. Bobieński, P. Nurowski: Irreducible $\mathrm{SO}(3)$-geometries in dimension five.to appear in J. Reine Angew. Math.; math.DG/0507152. MR 2338127
Reference: [Bon66] E. Bonan: Sur les variétés riemanniennes à groupe d’holonomie $G_2$ ou $\mathrm{Spin}(7)$.C. R. Acad. Sc. Paris 262 (1966), 127–129. MR 0196668
Reference: [BG99] C. P. Boyer, K. Galicki: $3$-Sasakian manifolds.in Essays on Einstein manifolds, (ed. by C. LeBrun and M. Wang), International Press 1999. Zbl 1008.53047, MR 1798609
Reference: [BG01] C. P. Boyer, K. Galicki: Einstein manifolds and contact geometry.Proc. Amer. Math. Soc. 129 (2001), 2419–2430. Zbl 0981.53027, MR 1823927
Reference: [BG07] C. P. Boyer, K. Galicki: Sasakian Geometry.Oxford Mathematical Monographs, Oxford University Press, to appear 2007. Zbl 1155.53002, MR 2382957
Reference: [BGM94] C. P. Boyer K. Galicki B. M. Mann: The geometry and topology of $3$-Sasakian manifolds.J. Reine Angew. Math. 455 (1994), 183–220. MR 1293878
Reference: [BRX02] L. Brink P. Ramond, X. Xiong: Supersymmetry and Euler multiplets.hep-th/0207253.
Reference: [BG72] R. B. Brown, A. Gray: Riemannian manifolds with holonomy group $\mathrm{Spin}(7)$.Differential Geometry in honor of K. Yano, Kinokiniya, Tokyo, 1972, 41–59. MR 0328817
Reference: [Br87] R. L. Bryant: Metrics with exceptional holonomy.Ann. of Math. 126 (1987), 525–576. Zbl 0637.53042, MR 0916718
Reference: [Br96] R. L. Bryant: Classical, exceptional, and exotic holonomies: a status report.Actes de la Table ronde de Géométrie Différentielle en l’honneur de M. Berger. Collection SMF Séminaires et Congrès 1 (1996), 93–166. Zbl 0882.53014, MR 1427757
Reference: [Br03] R. L. Bryant: Some remarks on $G_2$-structures.in Proceeding of the 2004 Gokova Conference on Geometry and Topology (May, 2003), math.DG/0305124. Zbl 1115.53018
Reference: [BrS89] R. L. Bryant, and S. M. Salamon: On the construction of some complete metrics with exceptional holonomy.Duke Math. J. 58 (1989), 829–850. MR 1016448
Reference: [Bu04] J. Bureš: Multisymplectic structures of degree three of product type on $6$-dimensional manifolds.Suppl. Rend. Circ. Mat. Palermo II, Ser. bf 72 (2004), 91–98. MR 2069397
Reference: [BV03] J. Bureš, J. Vanžura: Multisymplectic forms of degree three in dimension seven.Suppl. Rend. Circ. Mat. Palermo II, Ser. 71 (2003), 73–91. MR 1982435
Reference: [Bu05] J. B. Butruille: Classification des variétés approximativement kähleriennes homogènes.Ann. Global Anal. Geom. 27 (2005), 201–225. MR 2158165
Reference: [CP99] D. M. J. Calderbank, H. Pedersen: Einstein-Weyl geometry.Surveys in differential geometry: Essays on Einstein manifolds. Lectures on geometry and topology, J. Diff. Geom. Suppl. 6 (1999), 387–423. Zbl 0996.53030, MR 1798617
Reference: [Car22] E. Cartan: Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion.C. R. Ac. Sc. 174 (1922), 593–595.
Reference: [Car23] E. Cartan: Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie).Ann. Ec. Norm. Sup. 40 (1923), 325–412, part one. MR 1509253
Reference: [Car24a] E. Cartan: Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie, suite).Ann. Ec. Norm. Sup. 41 (1924), 1–25, part one (continuation). MR 1509255
Reference: [Car24b] E. Cartan: Les récentes généralisations de la notion d’espace.Bull. Sc. Math. 48 (1924), 294–320.
Reference: [Car25] E. Cartan: Sur les variétés à connexion affine et la théorie de la relativité généralisée (deuxième partie).Ann. Ec. Norm. Sup. 42 (1925), 17–88, part two. English transl. of both parts by A. Magnon and A. Ashtekar, On manifolds with an affine connection and the theory of general relativity. Napoli: Bibliopolis (1986). MR 1509263
Reference: [Cha70] I. Chavel: A class of Riemannian homogeneous spaces.J. Differential Geom. 4 (1970), 13–20. Zbl 0197.18302, MR 0270295
Reference: [ChG90] D. Chinea, G. Gonzales: A classification of almost contact metric manifolds.Ann. Mat. Pura Appl. 156 (1990), 15–36. MR 1080209
Reference: [ChM92] D. Chinea, J. C. Marrero: Classifications of almost contact metric structures.Rev. Roumaine Math. Pures Appl. 37 (1992), 581–599. MR 1172273
Reference: [ChF05] S. G. Chiossi A. Fino: Conformally parallel $G_2$-structures on a class of solvmanifolds.Math. Z. 252 (2006), 825–848. MR 2206629
Reference: [CS02] S. Chiossi, S. Salamon: The intrinsic torsion of $SU(3)$ and $G_2$ structures.in O. Gil-Medrano et. al. (eds.), Proc. Intern. Conf. Valencia, Spain, July 8-14, 2001, Singapore, World Scientific, 115–133 (2002). Zbl 1024.53018, MR 1922042
Reference: [CI03] R. Cleyton, S. Ivanov: On the geometry of closed $G_2$-structures.math.DG/0306362. Zbl 1122.53026
Reference: [CI06a] R. Cleyton, S. Ivanov: Curvature decomposition of $G_2$ manifolds.to appear.
Reference: [CI06b] R. Cleyton, S. Ivanov: Conformal equivalence between certain geometries in dimension $6$ and $7$.math.DG/0607487.
Reference: [CS02] R. Cleyton, A. Swann: Cohomogeneity-one $G_{2}$-structures.J. Geom. Phys. 44 (2002), 202–220. Zbl 1025.53024, MR 1969782
Reference: [CS04] R. Cleyton, A. Swann: Einstein metrics via intrinsic or parallel torsion.Math. Z. 247 (2004), 513–528. Zbl 1069.53041, MR 2114426
Reference: [CKL01] G. Curio B. Körs, D. Lüst: Fluxes and branes in type II vacua and M-theory geometry with $G_2$ and $Spin(7)$ holonomy.hep-th/0111165.
Reference: [DI01] P. Dalakov, S. Ivanov: Harmonic spinors of Dirac operators of connections with torsion in dimension $4$.Classical Quantum Gravity 18 (2001), 253–265. MR 1807617
Reference: [dWNW85] B. de Witt H. Nicolai, N. P. Warner: The embedding of gauged $n=8$ supergravity into $d=11$ supergravity.Nuclear Phys. B 255 (1985), 29. MR 0792244
Reference: [dWSHD87] B. de Witt D. J. Smit, and N. D. Hari Dass: Residual supersymmetry of compactified $D=10$ Supergravity.Nuclear Phys. B 283 (1987), 165.
Reference: [Djo83] D. Ž. Djoković: Classification of trivectors of an eight-dimensional real vector space.Linear and Multilinear Algebra 13 (1983), 3–39. MR 0691457
Reference: [DF02] I. G. Dotti, A. Fino: HyperKähler torsion structures invariant by nilpotent Lie groups.Classical Quantum Gravity 19 (2002), 551–562. Zbl 1001.53031, MR 1889760
Reference: [DO98] S. Dragomir L. Ornea: Locally conformal Kähler geometry.Progr. Math. vol. 155, Birkhäuser Verlag, 1998. MR 1481969
Reference: [Duf02] M. J. Duff: $M$-theory on manifolds of $G_2$-holonomy: the first twenty years.hep-th/0201062.
Reference: [Fer86] M. Fernández: A classification of Riemannian manifolds with structure group $\mathrm{Spin}(7)$.Ann. Mat. Pura Appl. 143 (1986), 101–122. MR 0859598
Reference: [Fer87] M. Fernández: An example of a compact calibrated manifold associated with the exceptional Lie group $G_2$.J. Differential Geom. 26 (1987), 367–370. MR 0906398
Reference: [FG82] M. Fernández, A. Gray: Riemannian manifolds with structure group $\mathrm{G}_2$.Ann. Mat. Pura Appl. 132 (1982), 19–45. MR 0696037
Reference: [FP02] J. Figueroa-O’Farrill G. Papadopoulos: Maximally supersymmetric solutions of ten- and eleven-dimensional supergravities.hep-th/0211089.
Reference: [Fin94] A. Fino: Almost contact homogeneous manifolds.Riv. Mat. Univ. Parma (5) 3 (1994), 321–332. Zbl 0847.53036, MR 1342063
Reference: [Fin95] A. Fino: Almost contact homogeneous structures.Boll. Un. Mat. Ital. A 9 (1995), 299–311. Zbl 0835.53039, MR 1336238
Reference: [Fin98] A. Fino: Intrinsic torsion and weak holonomy.Math. J. Toyama Univ. 21 (1998), 1–22. Zbl 0980.53060, MR 1684209
Reference: [Fin05] A. Fino: Almost Kähler $4$-dimensional Lie groups with $J$-invariant Ricci tensor.Differential Geom. Appl. 23 (2005), 26-37. Zbl 1084.53025, MR 2148908
Reference: [FG03] A. Fino, G. Grantcharov: Properties of manifolds with skew-symmetric torsion and special holonomy.Adv. Math. 189 (2004), 439–450. Zbl 1114.53043, MR 2101226
Reference: [FPS04] A. Fino M. Parton S. Salamon: Families of strong KT structures in six dimensons.Comment. Math. Helv. 79 (2004), 317–340. MR 2059435
Reference: [Fri80] Th. Friedrich: Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung.Math. Nachr. 97 (1980), 117–146. Zbl 0462.53027, MR 0600828
Reference: [Fri00] Th. Friedrich: Dirac operators in Riemannian geometry.Grad. Stud. Math. vol. 25, 2000. Zbl 0949.58032, MR 1777332
Reference: [Fr01] Th. Friedrich: Weak $\mathrm{Spin}(9)$-structures on $16$-dimensional Riemannian manifolds.Asian Math. J. 5 (2001), 129–160. MR 1868168
Reference: [Fr03a] Th. Friedrich: $Spin(9)$-structures and connections with totally skew-symmetric torsion.J. Geom. Phys. 47 (2003), 197–206. Zbl 1039.53049, MR 1991473
Reference: [Fri03b] Th. Friedrich: On types of non-integrable geometries.Rend. Circ. Mat. Palermo (2) Suppl. 71 (2003), 99–113. Zbl 1079.53041, MR 1982437
Reference: [Fri06] Th. Friedrich: $G_2$-manifolds with parallel characteristic torsion.math.DG/0604441, to appear in Differential Geom. Appl. Zbl 1141.53019, MR 2373939
Reference: [FG85] Th. Friedrich, R. Grunewald: On the first eigenvalue of the Dirac operator on $6$-dimensional manifolds.Ann. Global Anal. Geom. 3 (1985), 265–273. Zbl 0577.58034, MR 0813132
Reference: [FI02] Th. Friedrich, S. Ivanov: Parallel spinors and connections with skew-symmetric torsion in string theory.Asian J. Math. 6 (2002), 303–336. Zbl 1127.53304, MR 1928632
Reference: [FI03a] Th. Friedrich, S. Ivanov: Almost contact manifolds, connections with torsion and parallel spinors.J. Reine Angew. Math. 559 (2003), 217–236. Zbl 1035.53058, MR 1989651
Reference: [FI03b] Th. Friedrich, S. Ivanov: Killing spinor equations in dimension $7$ and geometry of integrable $\mathrm{G}_2$-manifolds.J. Geom. Phys. 48 (2003), 1–11. MR 2006222
Reference: [FK89] Th. Friedrich, I. Kath: Einstein manifolds of dimension five with small eigenvalues of the Dirac operator.J. Differential Geom. 19 (1989), 263–279. MR 0982174
Reference: [FK90] Th. Friedrich, I. Kath: $7$-dimensional compact Riemannian manifolds with Killing spinors.Comm. Math. Phys. 133 (1990), 543–561. Zbl 0722.53038, MR 1079795
Reference: [FKMS97] Th. Friedrich I. Kath A. Moroianu, U. Semmelmann: On nearly parallel $\mathrm{G}_2$-structures.J. Geom. Phys. 3 (1997), 256–286. MR 1484591
Reference: [FK00] Th. Friedrich, E. C. Kim: The Einstein-Dirac equation on Riemannian spin manifolds.J. Geom. Phys. 33 (2000), 128–172. Zbl 0961.53023, MR 1738150
Reference: [FS79] Th. Friedrich, S. Sulanke: Ein Kriterium für die formale Selbstadjungiertheit des Dirac-Operators.Coll. Math. XL (1979), 239–247. Zbl 0426.58023, MR 0547866
Reference: [FY05] J.-X. Fu, S.-T. Yau: Existence of supersymmetric Hermitian metrics with torsion on non-Kähler manifolds.hep-th/0509028.
Reference: [FP05] A. Fujiki, M. Pontecorvo: On Hermitian geometry of complex surfaces.in O. Kowalski et al. (ed.), Complex, contact and symmetric manifolds. In honor of L. Vanhecke. Selected lectures from the international conference “Curvature in Geometry" held in Lecce, Italy, June 11-14, 2003. Birkhäuser, Progr. Math. 234 (2005), 153–163. Zbl 1085.53065, MR 2105147
Reference: [FI78] T. Fukami, S. Ishihara: Almost Hermitian structure on $S^6$.Hokkaido Math. J. 7 (1978), 206–213. MR 0509406
Reference: [GHR84] S. J. Gates C. M. Hull M. Rocek: Twisted multiplets and new supersymmetric nonlinear sigma models.Nuclear Phys. B 248 (1984), 157. MR 0776369
Reference: [GKMW01] J. Gauntlett N. Kim D. Martelli D. Waldram: Fivebranes wrapped on SLAG three-cycles and related geometry.hep-th/0110034.
Reference: [GMW03] J. P. Gauntlett D. Martelli, D. Waldram: Superstrings with intrinsic torsion.Phys. Rev. D (3) 69 (2004), 086002. MR 2095098
Reference: [Gau95] P. Gauduchon: Structures de Weyl-Einstein, espaces de twisteurs et variétés de type $S^1 \times S^3$.J. Reine Angew. Math. 469 (1995), 1–50. MR 1363825
Reference: [Gau97] P. Gauduchon: Hermitian connections and Dirac operators.Boll. Un. Mat. Ital. Ser. VII 2 (1997), 257–289. Zbl 0876.53015, MR 1456265
Reference: [GT98] P. Gauduchon, K. P. Tod : Hyper-Hermitian metrics with symmetry.J. Geom. Phys. 25 (1998), 291–304. Zbl 0945.53042, MR 1619847
Reference: [Gil75] P. B. Gilkey: The spectral geometry of a Riemannian manifold.J. Differential Geom. 10 (1975), 601–618. Zbl 0316.53035, MR 0400315
Reference: [GLPS02] G. W. Gibbons H. Lü C. N. Pope, and K. S. Stelle: Supersymmetric domain walls from metrics of special holonomy.Nuclear Phys. B 623 (2002), 3–46. MR 1883449
Reference: [GKN00] M. Godlinski W. Kopczynski P. Nurowski: Locally Sasakian manifolds.Classical Quantum Gravity 17 (2000), L105–L115. MR 1791091
Reference: [Goe99] S. Goette: Equivariant $\eta $-invariants on homogeneous spaces.Math. Z. 232 (1999), 1–42. Zbl 0941.58016, MR 1714278
Reference: [Gol69] S. I. Goldberg: Integrabilty of almost Kähler manifolds.Proc. Amer. Math. Soc. 21 (1969), 96–100. MR 0238238
Reference: [GP02] E. Goldstein S. Prokushkin: Geometric model for complex non-Kähler manifolds with $\mathrm{SU}(3)$-structure.Comm. Math. Phys. 251 (2004), 65–78. MR 2096734
Reference: [GZ84] C. Gordon, W. Ziller: Naturally reductive metrics of nonpositive Ricci curvature.Proc. Amer. Math. Soc. 91 (1984), 287–290. Zbl 0513.53049, MR 0740188
Reference: [GP00] G. Grantcharov, Y. S. Poon: Geometry of hyper-Kähler connections with torsion.Comm. Math. Phys. 213 (2000), 19–37. Zbl 0993.53016, MR 1782143
Reference: [Gra70] A. Gray: Nearly Kähler manifolds.J. Differential Geom. 4 (1970), 283–309. Zbl 0201.54401, MR 0267502
Reference: [Gra71] A. Gray: Weak holonomy groups.Math. Z. 123 (1971), 290–300. Zbl 0222.53043, MR 0293537
Reference: [Gra76] A. Gray: The structure of nearly Kähler manifolds.Math. Ann. 223 (1976), 233–248. Zbl 0345.53019, MR 0417965
Reference: [GH80] A. Gray, L. M. Hervella: The sixteen classes of almost Hermitian manifolds and their linear invariants.Ann. Mat. Pura Appl. 123 (1980), 35–58. Zbl 0444.53032, MR 0581924
Reference: [GSW87] M. B. Green J. H. Schwarz, and E. Witten: Superstring theory. Volume 2: Loop amplitudes, anomalies and phenomenology.Cambridge Monogr. Math. Phys. 1987. MR 0878144
Reference: [GKRS98] B. H. Gross B. Kostant P. Ramond, and S. Sternberg: The Weyl character formula, the half-spin representations, and equal rank subgroups.Proc. Natl. Acad. Sci. USA 95 (1998), no. 15, 8441–8442. MR 1639139
Reference: [Gru90] R. Grunewald: Six-dimensional Riemannian manifolds with a real Killing spinor.Ann. Glob. Anal. Geom. 8 (1990), 43–59. Zbl 0704.53050, MR 1075238
Reference: [Gu35] G. B. Gurevich: Classification of trivectors of rank $8$.(in Russian), Dokl. Akad. Nauk SSSR 2 (1935), 353–355.
Reference: [Gu48] G. B. Gurevich: Algebra of trivectors II.(in Russian), Trudy Sem. Vektor. Tenzor. Anal. 6 (1948), 28–124. MR 0057861
Reference: [HHKN76] F. W. Hehl P. Von Der Heyde G. D. Kerlick J. M. Nester : General relativity with spin and torsion: Foundations and prospects.Rev. Modern Phys. 48 (1976), 393–416. MR 0439001
Reference: [HMMN95] F. W. Hehl J. D. McCrea E. W. Mielke Y. Ne’eman: Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance.Phys. Rep. 258 (1995), 1–171. MR 1340371
Reference: [Hel78] S. Helgason: Differential Geometry, Lie Groups and Symmetric Spaces.Pure Appl. Math. vol. 80, Acad. Press, New York, 1978. Zbl 0451.53038, MR 0514561
Reference: [Hit74] N. Hitchin: Harmonic spinors.Adv. Math. 14 (1974), 1–55. Zbl 0284.58016, MR 0358873
Reference: [Hit00] N. Hitchin: The geometry of three-forms in six and seven dimensions.J. Differential Geom. 55 (2000), 547–576. MR 1863733
Reference: [Hit01] N. Hitchin: Stable forms and special metrics.math.DG/0107101; Contemp. Math. 288 (2001), 70–89. Zbl 1004.53034, MR 1871001
Reference: [HP87] P. S. Howe, G. Papadopoulos: Ultraviolet behavior of two-dimensional supersymmetric nonlinear sigma models.Nuclear Phys. B 289 (1987), 264–276.
Reference: [HP92] P. S. Howe, G. Papadopoulos: Finitness and anomalies in $(4,0)$ supersymmetric sigma models.Nuclear Phys. B 381 (1992), 360.
Reference: [HP96] P. S. Howe, G. Papadopoulos: Twistor spaces for hyper-Kähler manifolds with torsion.Phys. Lett. B 379 (1996), 80–86. MR 1396267
Reference: [HP02] J.-S. Huang, P. Pandžić: Dirac cohomology, unitary representations and a proof of a conjecture of Vogan.J. Amer. Math. Soc. 15 (2002), 185–202. MR 1862801
Reference: [Hu86] C. M. Hull: Lectures On Nonlinear Sigma Models And Strings.PRINT-87-0480(Cambridge); Lectures given at Super Field Theories Workshop, Vancouver, Canada, July 25-Aug 6, 1986. MR 1102925
Reference: [Igu70] J.-I. Igusa,: A classification of spinors up to dimension twelve.Amer. J. Math. 92 (1970), 997–1028. Zbl 0217.36203, MR 0277558
Reference: [Ike75] A. Ikeda: Formally self adjointness for the Dirac operator on homogeneous spaces.Osaka J. Math. 12 (1975), 173–185. Zbl 0317.58019, MR 0376962
Reference: [In62] L. Infeld (volume dedicated to): Recent developments in General Relativity.Oxford, Pergamon Press & Warszawa, PWN, 1962. MR 0164694
Reference: [Iv04] S. Ivanov: Connections with torsion, parallel spinors and geometry of $\mathrm{Spin}(7)$-manifolds.Math. Res. Lett. 11 (2004), 171–186. MR 2067465
Reference: [IM04] S. Ivanov, I. Minchev: Quaternionic Kähler and hyperKähler manifolds with torsion and twistor spaces.J. Reine Angew. Math. 567 (2004), 215–233. MR 2038309
Reference: [IP01] S. Ivanov, G. Papadopoulos: Vanishing theorems and string background.Classical Quantum Gravity 18 (2001), 1089–1110. MR 1822270
Reference: [IPP05] S. Ivanov M. Parton, P. Piccinni: Locally conformal parallel $G_2$- and $\mathrm{Spin}(7)$-structures.math.DG/0509038, to appear in Math. Res. Lett. 13 (2006). MR 2231110
Reference: [Jel96] W. Jelonek: Some simple examples of almost Kähler non-Kähler structures.Math. Ann. 305 (1996), 639–649. Zbl 0858.53027, MR 1399708
Reference: [Jen75] G. Jensen: Imbeddings of Stiefel manifolds into Grassmannians.Duke Math. J. 42 (1975), 397–407. Zbl 0335.53042, MR 0375164
Reference: [Joy92] D. Joyce: Compact hypercomplex and quaternionic manifolds.J. Differential Geom. 35 (1992), 743–761. Zbl 0735.53050, MR 1163458
Reference: [Joy96a] D. Joyce: Compact Riemannian $7$-manifolds with holonomy $G_2$. I.J. Differential Geom. 43 (1996), 291–328. MR 1424428
Reference: [Joy96b] D. Joyce: Compact Riemannian $7$-manifolds with holonomy $G_2$. II.J. Differential Geom. 43 (1996), 329–375. MR 1424428
Reference: [Joy96c] D. Joyce: Compact $8$-manifolds with holonomy $\mathrm{Spin}(7)$.Invent. Math. 123 (1996), 507–552. MR 1383960
Reference: [Joy00] D. Joyce: Compact manifolds with special holonomy.Oxford Science Publ., 2000. Zbl 1027.53052, MR 1787733
Reference: [Kap83] A. Kaplan: On the geometry of groups of Heisenberg type.Bull. London Math. Soc. 15 (1983), 35–42. Zbl 0521.53048, MR 0686346
Reference: [Ka71] T. Kashiwada: A note on a Riemannian space with Sasakian $3$-structure.Natur. Sci. Rep. Ochanomizu Univ. 22 (1971), 1–2. Zbl 0228.53033, MR 0303449
Reference: [Ka01] T. Kashiwada: On a contact 3-structure.Math. Z. 238 (2001), 829–832. Zbl 1004.53058, MR 1872576
Reference: [KS01] G. Ketsetzis, S. Salamon: Complex structures on the Iwasawa manifold.Adv. Geom. 4 (2004), 165–179. Zbl 1059.22012, MR 2055676
Reference: [Kib61] T. W. B. Kibble: Lorentz invariance and the gravitational field.J. Math. Phys. 2 (1961), 212–221. Zbl 0095.22903, MR 0127952
Reference: [Kl72] F. Klein: Das Erlanger Programm.Ostwalds Klassiker der exakten Wissenschaften Band 253, Verlag H. Deutsch, Frankfurt a. M., 1995. Zbl 0833.01037
Reference: [Kir86] K.-D. Kirchberg: An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature.Ann. Global Anal. Geom. 4 (1986), 291–325. Zbl 0629.53058, MR 0910548
Reference: [Kir93] K.-D. Kirchberg: Killing spinors on Kähler manifolds.Ann. Global Anal. Geom. 11 (1993), 141–164. Zbl 0810.53033, MR 1225435
Reference: [Kir05] K.-D. Kirchberg: Integrability conditions for almost Hermitian and almost Kähler $4$-manifolds.math.DG/0605611.
Reference: [Kir77] V. F. Kirichenko: $K$-spaces of maximal rank.Mat. Zametki 22 (1977), 465–476. MR 0474103
Reference: [KR02] V. F. Kirichenko A. R. Rustanov: Differential geometry of quasi-Sasakian manifolds.Sb. Math. 193 (2002), 1173-1201; translation from Mat. Sb. 193 (2002), 71–100. MR 1934545
Reference: [KN63] S. Kobayashi, K. Nomizu: Foundations of differential geometry I.Wiley Classics Library, Wiley Inc., Princeton, 1963, 1991. Zbl 0119.37502
Reference: [KN69] S. Kobayashi, K. Nomizu: Foundations of differential geometry II.Wiley Classics Library, Wiley Inc., Princeton, 1969, 1996.
Reference: [Kop73] W. Kopczyński: An anisotropic universe with torsion.Phys. Lett. A 43 (1973), 63–64.
Reference: [Kos56] B. Kostant: On differential geometry and homogeneous spaces II.Proc. N. A. S. 42 (1956), 354–357. Zbl 0075.31603, MR 0088017
Reference: [Kos99] B. Kostant: A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups.Duke Math. J. 100 (1999), 447–501. Zbl 0952.17005, MR 1719734
Reference: [Kost02] B. Kostant: Dirac cohomology for the Cubic Dirac operator.in: Joseph, Anthony (ed.) et al., Studies in memory of Issai Schur. Basel: Birkhäuser. Progr. Math. 210 (2003), 69–93. Zbl 1165.17301, MR 1985723
Reference: [KM01] B. Kostant, P. Michor: The generalized Cayley map from an algebraic group to its Lie algebra.preprint (arXiv:math.RT/0109066v1, 10 Sep 2001), to appear in The Orbit Method in Geometry and Physics (A. A. Kirillov Festschrift), Progr. Math. (2003). Zbl 1072.20051, MR 1995382
Reference: [Kov03] A. Kovalev: Twisted connected sums and special Riemannian holonomy.J. Reine Angew. Math. 565 (2003), 125–160. Zbl 1043.53041, MR 2024648
Reference: [KVh83] O. Kowalski, L. Vanhecke: Four-dimensional naturally reductive homogeneous spaces.Differential geometry on homogeneous spaces, Conf. Torino/Italy 1983, Rend. Sem. Mat., Torino, Fasc. Spec. (1983), 223-232. Zbl 0631.53039, MR 0829007
Reference: [KVh84] O. Kowalski, L. Vanhecke: A generalization of a theorem on naturally reductive homogeneous spaces.Proc. Amer. Math. Soc. 91 (1984), 433–435. Zbl 0542.53029, MR 0744644
Reference: [KVh85] O. Kowalski, L. Vanhecke: Classification of five-dimensional naturally reductive spaces.Math. Proc. Cambridge Philos. Soc. 97 (1985), 445–463. Zbl 0555.53024, MR 0778679
Reference: [KW87] O. Kowalski, S. Wegrzynowski: A classification of $5$-dimensional $\varphi $-symmetric spaces.Tensor, N. S. 46 (1987), 379–386.
Reference: [Kre91] E. Kreyszig: Differential geometry.Dover Publ., inc., New York, 1991, unabridged republication of the 1963 printing. MR 1118149
Reference: [Lan00] G. Landweber: Harmonic spinors on homogeneous spaces.Represent. Theory 4 (2000), 466–473. Zbl 0972.22008, MR 1780719
Reference: [LY05] J.-L. Li, S.-T. Yau: Existence of supersymmetric string theory with torsion.J. Differential Geom. 70 (2005), 143–182 and hep-th/0411136. Zbl 1102.53052, MR 2192064
Reference: [Li63] A. Lichnerowicz: Spineurs harmoniques.C. R. Acad. Sci. Paris 257 (1963), 7–9. Zbl 0136.18401, MR 0156292
Reference: [Li87] A. Lichnerowicz: Spin manifolds, Killing spinors and universality of the Hijazi inequality.Lett. Math. Phys. 13 (1987), 331–344. Zbl 0624.53034, MR 0895296
Reference: [Lich88] A. Lichnerowicz: Les spineurs-twisteurs sur une variété spinorielle compacte.C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 381–385. Zbl 0641.53014, MR 0934624
Reference: [LT89] D. Lüst, S. Theisen: Lectures on String Theory.Springer-Verlag, 1989. MR 1028064
Reference: [MSY06] D. Martelli J. Sparks S.-T. Yau: Sasaki-Einstein Manifolds and Volume Minimisation.hep-th/0603021.
Reference: [MC05] F. Martín Cabrera: Special almost Hermitian geometry.J. Geom. Phys. 55 (2005), 450–470. MR 2162420
Reference: [CMS96] F. Martín Cabrera M. D. Monar Hernandez A. F. Swann: Classification of $G_2$-structures.J. London Math. Soc. II. Ser. 53 (1996), 407–416. MR 1373070
Reference: [MCS04] F. Martín Cabrera, A. F. Swann: Almost Hermitian structures and quaternionic geometries.Differential Geom. Appl. 21 (2004), 199–214. MR 2073825
Reference: [McKW89] Y. McKenzie Wang: Parallel spinors and parallel forms.Ann. Global Anal. Geom. 7 (1989), 59–68. MR 1029845
Reference: [MZ04] S. Mehdi, R. Zierau: Principal Series Representations and Harmonic Spinors.to appear in Adv. Math. (preprint at http://www.math.okstate.edu/~zierau/papers.html). Zbl 1085.22011, MR 2186917
Reference: [MS00] J. Michelson A. Strominger: The geometry of (super) conformal quantum mechanics.Comm. Math. Phys. 213 (2000), 1–17. MR 1782142
Reference: [Miq82] V. Miquel: The volume of small geodesic balls for a metric connection.Compositio Math. 46 (1982), 121–132. MR 0660156
Reference: [Miq01] V. Miquel: Volumes of geodesic balls and spheres associated to a metric connection with torsion.Contemp. Math. 288 (2001), 119–128. Zbl 1005.53012, MR 1871004
Reference: [Na95] S. Nagai: Naturally reductive Riemannian homogeneous structure on a homogeneous real hypersurface in a complex space form.Boll. Un. Mat. Ital. A (7) 9 (1995), 391–400. Zbl 0835.53068, MR 1336245
Reference: [Na96] S. Nagai: Naturally reductive Riemannian homogeneous structures on some classes of generic submanifolds in complex space forms.Geom. Dedicata 62 (1996), 253–268. Zbl 0860.53032, MR 1406440
Reference: [Na97] S. Nagai: The classification of naturally reductive homogeneous real hypersurfaces in complex projective space.Arch. Math. 69 (1997), 523–528. Zbl 0901.53037, MR 1480520
Reference: [Na02a] P.-A. Nagy: Nearly Kähler geometry and Riemannian foliations.Asian J. Math. 6 (2002) 481–504. Zbl 1041.53021, MR 1946344
Reference: [Na02b] P.-A. Nagy: On nearly-Kähler geometry.Ann. Global Anal. Geom. 22 (2002), 167–178. Zbl 1020.53030, MR 1923275
Reference: [NP97] P. Nurowski M. Przanowski: A four-dimensional example of Ricci-flat metric admitting almost-Kähler non-Kähler structure.ESI preprint 477, 1997; Classical Quantum Gravity 16 (1999), L9–L16. MR 1682582
Reference: [Nu06] P. Nurowski: Distinguished dimensions for special Riemannian geometries.math.DG/0601020.
Reference: [Par72] R. Parthasarathy: Dirac operator and the discrete series.Ann. of Math. 96 (1972), 1–30. Zbl 0249.22004, MR 0318398
Reference: [Pen83] R. Penrose: Spinors and torsion in general relativity.Found. of Phys. 13 (1983), 325-339. MR 0838841
Reference: [PS01] Y. S. Poon, A. F. Swann: Potential functions of HKT spaces.Classical Quantum Gravity 18 (2001), 4711–4714. Zbl 1007.53038, MR 1894924
Reference: [PS03] Y. S. Poon, A. F. Swann: Superconformal symmetry and HyperKähler manifolds with torsion.Comm. Math. Phys. 241 (2003), 177–189. MR 2013757
Reference: [Pu06] Chr. Puhle: The Killing equation with higher order potentials.Ph. D. Thesis, Humboldt-Universität zu Berlin, 2006/07.
Reference: [Reich07] W. Reichel: Über trilineare alternierende Formen in sechs und sieben Veränderlichen und die durch sie definierten geometrischen Gebilde.Druck von B. G. Teubner in Leipzig 1907, Dissertation an der Universität Greifswald.
Reference: [Roc92] M. Rocek: Modified Calabi-Yau manifolds with torsion.in: Yau, Shing-Tung (ed.), Essays on mirror manifolds. Cambridge, MA: International Press. 1992, 480–488. Zbl 0859.53050, MR 1191438
Reference: [RT03] M. L. Ruggiero, A. Tartaglia: Einstein–Cartan theory as a theory of defects in space-time.Amer. J. Phys. 71 (2003), 1303–1313. MR 2016766
Reference: [Sal89] S. Salamon: Riemannian geometry and holonomy groups.Pitman Res. Notes Math. Ser. 201, Jon Wiley & Sons, 1989. Zbl 0685.53001, MR 1004008
Reference: [Sal01] S. Salamon: Complex structures on nilpotent Lie algebras.J. Pure Appl. Algebra 157 (2001), 311–333. MR 1812058
Reference: [Sal03] S. Salamon: A tour of exceptional geometry.Milan J. Math. 71 (2003), 59–94. Zbl 1055.53039, MR 2120916
Reference: [Sek87] K. Sekigawa: On some compact Einstein almost Kähler manifolds.J. Math. Soc. Japan 39 (1987), 677–684. Zbl 0637.53053, MR 0905633
Reference: [Sch06] N. Schoemann: Almost hermitian structures with parallel torsion.PhD thesis, Humboldt-Universität zu Berlin, 2006. Zbl 1137.53014, MR 2360237
Reference: [Sch24] J. A. Schouten: Der Ricci-Kalkül.Grundlehren Math. Wiss. 10, Springer-Verlag Berlin, 1924. MR 0516659
Reference: [Sch31] J. A. Schouten: Klassifizierung der alternierenden Größen dritten Grades in $7$ Dimensionen.Rend. Circ. Mat. Palermo 55 (1931), 137–156.
Reference: [Schr32] E. Schrödinger: Diracsches Elektron im Schwerefeld I.Sitzungsberichte der Preussischen Akademie der Wissenschaften, Phys.-Math. Klasse 1932, Verlag der Akademie der Wissenschaften Berlin, 1932, 436–460.
Reference: [Sim62] J. Simons: On the transitivity of holonomy systems.Ann. of Math. 76 (1962), 213–234. Zbl 0106.15201, MR 0148010
Reference: [Sle87a] S. Slebarski: The Dirac operator on homogeneous spaces and representations of reductive Lie groups I.Amer. J. Math. 109 (1987), 283–301. Zbl 0649.58031, MR 0882424
Reference: [Sle87b] S. Slebarski: The Dirac operator on homogeneous spaces and representations of reductive Lie groups II.Amer. J. Math. 109 (1987), 499–520. Zbl 0669.22003, MR 0892596
Reference: [SSTP88] P. Spindel A. Sevrin W. Troost, and A. van Proeyen: Extended supersymmetric $\sigma $-models on group manifolds.Nuclear Phys. B 308 (1988), 662–698. MR 0967938
Reference: [Ste99] S. Sternberg: Lie algebras.Lecture Notes in Math. 1999.
Reference: [Str86] A. Strominger: Superstrings with torsion.Nuclear Phys. B 274 (1986), 253–284. MR 0851702
Reference: [Str69] K. Strubecker: Differentialgeometrie. II: Theorie der Flächenmetrik.Sammlung Göschen, W. de Gruyter, Berlin, 1969. Zbl 0169.23501, MR 0239514
Reference: [Sw89] A. F. Swann: Aspects symplectiques de la géométrie quaternionique.C. R. Acad. Sci. Paris, Sér. I 308 (1989), 225–228. Zbl 0661.53023, MR 0986384
Reference: [Sw91] A. F. Swann: HyperKähler and quaternionic Kähler geometry.Math. Ann. 289 (1991), 421–450. Zbl 0711.53051, MR 1096180
Reference: [Sw00] A. F. Swann: Weakening holonomy.ESI preprint No. 816 (2000); in S. Marchiafava et. al. (eds.), Proc. of the Second Meeting on Quaternionic Structures in Mathematics and Physics, Roma 6-10 September 1999, World Scientific, Singapore 2001, 405–415. MR 1848678
Reference: [Taf75] J. Tafel: A class of cosmological models with torsion and spin.Acta Phys. Polon. B 6 (1975), 537–554.
Reference: [Ta89] S. Tanno: Variational problems on contact Riemannian manifolds.Trans. Amer. Math. Soc. 314 (1989), 349–379. Zbl 0677.53043, MR 1000553
Reference: [Thu76] W. Thurston: Some simple examples of symplectic manifolds.Proc. Amer. Math. Soc. 55 (1976), 467–468. Zbl 0324.53031, MR 0402764
Reference: [Tra73a] A. Trautman: On the structure of the Einstein-Cartan equations.Sympos. Math. 12 (1973), 139–162. Zbl 0273.53021, MR 0376097
Reference: [Tra73b] A. Trautman: Spin and torsion may avert gravitational singularities.Nature Phys. Sci. 242 (1973) 7.
Reference: [Tra99] A. Trautman: Gauge and optical aspects of gravitation.Classical Quantum Gravity 16 (1999), 157–175. Zbl 0948.83010, MR 1728438
Reference: [TV83] F. Tricerri, L. Vanhecke: Homogeneous structures on Riemannian manifolds.London Math. Soc. Lecture Notes Series, vol. 83, Cambridge Univ. Press, Cambridge, 1983. Zbl 0509.53043, MR 0712664
Reference: [TV84a] F. Tricerri, L. Vanhecke: Geodesic spheres and naturally reductive homogeneous spaces.Riv. Mat. Univ. Parma 10 (1984), 123–131. Zbl 0563.53040, MR 0777319
Reference: [TV84b] F. Tricerri, L. Vanhecke: Naturally reductive homogeneous spaces and generalized Heisenberg groups.Compositio Math. 52 (1984), 389–408. Zbl 0551.53028, MR 0756730
Reference: [Vai76] I. Vaisman: On locally conformal almost kähler manifolds.Israel J. Math. 24 (1976), 338–351. Zbl 0335.53055, MR 0418003
Reference: [Vai79] I. Vaisman: Locally conformal Kähler manifolds with parallel Lee form.Rend. Math. Roma 12 (1979), 263–284. Zbl 0447.53032, MR 0557668
Reference: [VanN81] P. Van Nieuwenhuizen: Supergravity.Phys. Rep. 68 (1981), 189–398. Zbl 0465.53041, MR 0615178
Reference: [Van01] J. Vanžura: One kind of multisymplectic structures on $6$-manifolds.Proceedings of the Colloquium on Differential Geometry, Debrecen, 2000, 375–391 (2001). MR 1859316
Reference: [Ve02] M. Verbitsky: HyperKähler manifolds with torsion, supersymmetry and Hodge theory.Asian J. Math. 6 (2002), 679–712. MR 1958088
Reference: [VE88] A. B. Vinberg, A. G. Ehlahvili: Classification of trivectors of a $9$-dimensional space.Sel. Math. Sov. 7 (1988), 63–98. Translated from Tr. Semin. Vektorn. Tensorm. Anal. Prilozh. Geom. Mekh. Fiz. 18 (1978), 197–233. Zbl 0648.15021, MR 0504529
Reference: [McKW89] M. Y. Wang: Parallel spinors and parallel forms.Ann. Global Anal. Geom. 7 (1989), 59–68. Zbl 0688.53007, MR 1029845
Reference: [WZ85] M. Y. Wang, W. Ziller: On normal homogeneous Einstein manifolds.Ann. Sci. Éc. Norm. Sup., $4^{e}$ série 18 (1985), 563–633. Zbl 0598.53049, MR 0839687
Reference: [We81] R. Westwick: Real trivectors of rank seven.Linear and Multilinear Algebra 10 (1981), 183–204. Zbl 0464.15001, MR 0630147
Reference: [Wi04] F. Witt: Generalised $G_2$-manifolds.Comm. Math. Phys. 265 (2006), 275–303, math.DG/0411642. Zbl 1154.53014, MR 2231673
Reference: [Wi06] F. Witt: Special metrics and Triality.math.DG/0602414.
Reference: [Wol74] J. A. Wolf: Partially harmonic spinors and representations of reductive Lie groups.J. Funct. Anal. 15 (1974), 117–154. Zbl 0279.22009, MR 0393351
Reference: [Yau78] S.-T. Yau: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampŕe equations. I.Comm. Pure Appl. Math. 31 (1978), 339–411. MR 0480350
Reference: [Zil77] W. Ziller: The Jacobi equation on naturally reductive compact Riemannian homogeneous spaces.Comment. Math. Helv. 52 (1977), 573–590. Zbl 0368.53033, MR 0474145
Reference: [Zil82] W. Ziller: Homogeneous Einstein metrics on spheres and projective spaces.Math. Ann. 259 (1982), 351–358. Zbl 0469.53043, MR 0661203
.

Files

Files Size Format View
ArchMathRetro_042-2006-5_1.pdf 835.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo