Previous |  Up |  Next

Article

Title: Coincidence free pairs of maps (English)
Author: Koschorke, Ulrich
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 5
Year: 2006
Pages: 105-117
Summary lang: English
.
Category: math
.
Summary: This paper centers around two basic problems of topological coincidence theory. First, try to measure (with the help of Nielsen and minimum numbers) how far a given pair of maps is from being loose, i.e. from being homotopic to a pair of coincidence free maps. Secondly, describe the set of loose pairs of homotopy classes. We give a brief (and necessarily very incomplete) survey of some old and new advances concerning the first problem. Then we attack the second problem mainly in the setting of homotopy groups. This leads also to a very natural filtration of all homotopy sets. Explicit calculations are carried out for maps into spheres and projective spaces. (English)
Keyword: coincidence
Keyword: Nielsen number
Keyword: minimum number
Keyword: configuration space
Keyword: projective space
Keyword: filtration
MSC: 55M20
MSC: 55Q52
MSC: 57R22
idZBL: Zbl 1164.55300
idMR: MR2322402
.
Date available: 2008-06-06T22:49:11Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108022
.
Reference: [1] Brown R.: Wecken properties for manifolds.Contemp. Math. 152 (1993), 9–21. Zbl 0816.55001, MR 1243467
Reference: [2] Brown R., Schirmer H.: Nielsen coincidence theory and coincidence–producing maps for manifolds with boundary.Topology Appl. 46 (1992), 65–79. Zbl 0757.55002, MR 1177164
Reference: [3] Brooks R. B. S.: On removing coincidences of two maps when only one, rather than both, of them may be deformed by a homotopy.Pacif. J. Math. 39 (1971), 45–52. MR 0341470
Reference: [4] Dold A., Gonçalves D.: Self–coincidence of fibre maps.Osaka J. Math. 42 (2005), 291–307. Zbl 1079.55006, MR 2147735
Reference: [5] Fadell E., Neuwirth L.: Configuration spaces.Math. Scand. 10 (1962), 111–118. Zbl 0136.44104, MR 0141126
Reference: [6] Geoghegan R.: Nielsen Fixed Point Theory.Handbook of geometric topology, (R.J. Daverman and R. B. Sher, Ed.), 500–521, Elsevier Science 2002. Zbl 0992.55002, MR 1886677
Reference: [7] Jiang B.: Fixed points and braids.Invent. Math. 75 (1984), 69–74. Zbl 0565.55005, MR 0728139
Reference: [8] Jiang B.: Fixed points and braids. II.Math. Ann. 272 (1985), 249–256. Zbl 0617.55001, MR 0796251
Reference: [9] Jiang B.: Commutativity and Wecken properties for fixed points of surfaces and 3–manifolds.Topology Appl. 53 (1993), 221–228. MR 1247678
Reference: [10] Kelly M.: The relative Nielsen number and boundary-preserving surface maps.Pacific J. Math. 161, No. 1, (1993), 139–153. Zbl 0794.55002, MR 1237142
Reference: [11] Koschorke U.: Vector fields and other vector bundle monomorphisms – a singularity approach.Lect. Notes in Math. 847 (1981), Springer–Verlag. MR 0611333
Reference: [12] Koschorke U.: Selfcoincidences in higher codimensions.J. reine angew. Math. 576 (2004), 1–10. Zbl 1054.57030, MR 2099198
Reference: [13] Koschorke U.: Nielsen coincidence theory in arbitrary codimensions.J. reine angew. Math. (to appear). Zbl 1107.55002, MR 2270573
Reference: [14] Koschorke U.: Linking and coincidence invariants.Fundamenta Mathematicae 184 (2004), 187–203. Zbl 1116.57021, MR 2128050
Reference: [15] Koschorke U.: Geometric and homotopy theoretic methods in Nielsen coincidence theory.Fixed Point Theory and App. (2006), (to appear). Zbl 1094.55006, MR 2210381
Reference: [16] Koschorke U.: Nonstabilized Nielsen coincidence invariants and Hopf–Ganea homomorphisms.Geometry and Topology 10 (2006), 619–665. Zbl 1128.55002, MR 2240900
Reference: [17] Koschorke U.: Minimizing coincidence numbers of maps into projective spaces.submitted to Geometry and Topology monographs (volume dedicated to Heiner Zieschang). (The papers [12] – [17] can be found at http://www.math.uni-siegen.de/topology/publications.html) Zbl 1158.55002, MR 2484710
Reference: [18] Nielsen J.: Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen.Acta Math. 50 (1927), 189–358. MR 1555256
Reference: [19] Toda H.: Composition methods in homotopy groups of spheres.Princeton Univ. Press, 1962. Zbl 0101.40703, MR 0143217
Reference: [20] Wecken F.: Fixpunktklassen, I.Math. Ann. 117 (1941), 659–671. MR 0005339
Reference: Wecken F.: Fixpunktklassen, II.Math. Ann. 118 (1942), 216–234. MR 0010280
Reference: Wecken F.: Fixpunktklassen, III.Math. Ann. 118 (1942), 544–577. MR 0010281
.

Files

Files Size Format View
ArchMathRetro_042-2006-5_3.pdf 274.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo