Previous |  Up |  Next


Title: Algebraic theory of affine curvature tensors (English)
Author: Blažić, N.
Author: Gilkey, P.
Author: Nikčević, S.
Author: Simon, U.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 5
Year: 2006
Pages: 147-168
Summary lang: English
Category: math
Summary: We use curvature decompositions to construct generating sets for the space of algebraic curvature tensors and for the space of tensors with the same symmetries as those of a torsion free, Ricci symmetric connection; the latter naturally appear in relative hypersurface theory. (English)
Keyword: algebraic curvature tensors
Keyword: affine curvature tensors
MSC: 53Bxx
idZBL: Zbl 1164.53320
idMR: MR2322404
Date available: 2008-06-06T22:49:16Z
Last updated: 2012-05-10
Stable URL:
Reference: [1] Bokan N.: On the complete decomposition of curvature tensors of Riemannian manifolds with symmetric connection.Rend. Circ. Mat. Palermo XXIX (1990), 331–380. Zbl 0728.53016, MR 1119735
Reference: [2] Díaz-Ramos J. C., García-Río E.: A note on the structure of algebraic curvature tensors.Linear Algebra Appl. 382 (2004), 271–277. Zbl 1056.53014, MR 2050112
Reference: [3] Fiedler B.: Determination of the structure of algebraic curvature tensors by means of Young symmetrizers.Seminaire Lotharingien de Combinatoire B48d (2003). 20 pp. Electronically published:$\sim $slc/; see also math.CO/0212278. Zbl 1043.53016, MR 1988613
Reference: [4] Gilkey P.: Geometric properties of natural operators defined by the Riemann curvature tensor.World Scientific Publishing Co., Inc., River Edge, NJ, 2001. Zbl 1007.53001, MR 1877530
Reference: [5] Singer I. M., Thorpe J. A.: The curvature of $4$-dimensional Einstein spaces.1969 Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 355–365. Zbl 0199.25401, MR 0256303
Reference: [6] Simon U., Schwenk-Schellschmidt A., Viesel H.: Introduction to the affine differential geometry of hypersurfaces.Science University of Tokyo 1991. MR 1200242
Reference: [7] Strichartz R.: Linear algebra of curvature tensors and their covariant derivatives.Can. J. Math. XL (1988), 1105–1143. Zbl 0652.53012, MR 0973512
Reference: [8] Weyl H.: Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung.Gött. Nachr. (1921), 99–112.


Files Size Format View
ArchMathRetro_042-2006-5_5.pdf 318.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo