Title:
|
Algebraic analysis of the Rarita-Schwinger system in real dimension three (English) |
Author:
|
Damiano, Alberto |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
42 |
Issue:
|
5 |
Year:
|
2006 |
Pages:
|
197-211 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we use the explicit description of the Spin–$\frac{3}{2}$ Dirac operator in real dimension $3$ appeared in (Homma, Y., The Higher Spin Dirac Operators on $3$–Dimensional Manifolds. Tokyo J. Math. 24 (2001), no. 2, 579–596.) to perform the algebraic analysis of the space of nullsolution of the system of equations given by several Rarita–Schwinger operators. We make use of the general theory provided by (Colombo, F., Sabadini, I., Sommen, F., Struppa, D. C., Analysis of Dirac systems and computational algebra, Progress in Mathematical Physics, Vol. 39, Birkhäuser, Boston, 2004.) and some standard Gröbner Bases techniques. Our aim is to show that such operator shares many of the algebraic properties of the Dirac operator in real dimension four. In particular, we prove the exactness of the associated algebraic complex, a duality result and we explicitly describe the space of polynomial solutions. (English) |
MSC:
|
53C27 |
MSC:
|
58J60 |
idZBL:
|
Zbl 1164.53357 |
idMR:
|
MR2322407 |
. |
Date available:
|
2008-06-06T22:49:26Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/108027 |
. |
Reference:
|
[1] Adams W. W., Berenstein C. A., Loustaunau P., Sabadini I., Struppa D. C.: Regular functions of several quaternionic variables and the Cauchy–Fueter complex.J. Geom. Anal. 9 (1999), 1–16. Zbl 0966.35088, MR 1760717 |
Reference:
|
[2] Adams W. W., Loustaunau P.: Analysis of the module determining the properties of regular functions of several quaternionic variables.Pacific J. Math. 196 (2000), no. 1, 1–15. MR 1796513 |
Reference:
|
[3] Bureš J.: The Rarita-Schwinger operator and spherical monogenic forms.Complex Variables Theory Appl. 43 (2000), no. 1, 77–108. Zbl 1026.58025, MR 1809813 |
Reference:
|
[4] Bureš J., Damiano A., Sabadini I.: Explicit resolutions for the complex several Fueter operators.J. Geom. Phys. 57 3 (2007), 765–775. MR 2275189 |
Reference:
|
[5] Bureš J., Sommen F., Souček V., Van Lancker P.: Rarita-Schwinger type operators in Clifford analysis.J. Funct. Anal. 185 (2001), no. 2, 425–455. Zbl 1078.30041, MR 1856273 |
Reference:
|
[6] CoCoATeam: CoCoA.A software package for COmputations in COmmutative Algebra, freely available at http://cocoa.dima.unige.it |
Reference:
|
[7] Colombo F., Damiano A., Sabadini I., Struppa D. C.: A surjectivity theorem for differential operators on spaces of regular functions.Complex Variables Theory Appl. 50 (2005), no. 6, 389–400. Zbl 1096.30040, MR 2148589 |
Reference:
|
[8] Colombo F., Souček V., Struppa D. C.: Invariant resolutions for several Fueter operators.J. Geom. Phys. 56 7 (2006), 1175–1191. Zbl 1103.30031, MR 2234365 |
Reference:
|
[9] Colombo F., Damiano A., Sabadini I., Struppa D. C.: A new Dolbeault complex in quaternionic and Clifford analysis.to appear in Proceedings Fifth ISAAC Congress, Catania, 2005. Zbl 1185.30052, MR 2148589 |
Reference:
|
[10] Colombo F., Sabadini I., Sommen F., Struppa D. C.: Analysis of Dirac systems and computational algebra.Progress in Mathematical Physics, Vol. 39, Birkhäuser, Boston, 2004. Zbl 1064.30049, MR 2089988 |
Reference:
|
[11] Damiano A.: Computational Approach to some Problems in Algebraic Analysis.Ph.D. Dissertation, George Mason University, 2005. MR 2707440 |
Reference:
|
[12] Damiano A., Mannino S.: CoAlA.A web page for COmputational ALgebraic Analysis available at http://www.tlc185.com/coala. |
Reference:
|
[13] Damiano A., Sabadini I., Struppa D. C.: New algebraic properties of biregular functions in $2n$ quaternionic variables.Compl. Var. Ell. Eq. 51 (2006), No. 5–6, 497–510. 2006. Zbl 1184.30047, MR 2230263 |
Reference:
|
[14] Damiano A., Sabadini I., Struppa D. C.: Computational methods for the construction of a class of noetherian operators.to appear in Exp. Math. Zbl 1136.13014, MR 2312976 |
Reference:
|
[15] Delanghe R., Sommen F., Soucek V.: Clifford Algebra and Spinor-valued Functions.Math. Appl. 53, Kluwer Academic Publishers, 1992. Zbl 0747.53001, MR 1169463 |
Reference:
|
[16] Eisenbud D.: The Geometry of Syzygies.Graduate Texts in Mathematics, Vol. 229, Springer-Verlag, New York, 2005. Zbl 1066.14001, MR 2103875 |
Reference:
|
[17] Homma Y.: The Higher Spin Dirac Operators on $3$–Dimensional Manifolds.Tokyo J. Math. 24 (2001), no. 2, 579–596. Zbl 1021.53026, MR 1874992 |
Reference:
|
[18] Kreuzer M., Robbiano L.: Computational Commutative Algebra 1.Springer, 2000. MR 1790326 |
Reference:
|
[19] Kreuzer M., Robbiano L.: Computational Commutative Algebra 2.Springer, 2005. MR 2159476 |
Reference:
|
[20] Palamodov V. P.: Linear Differential Operators with Constant Coefficients.Springer Verlag, New York 1970. Zbl 0191.43401, MR 0264197 |
Reference:
|
[21] Sabadini I., Sommen F., Struppa D. C.: The Dirac complex on abstract vector variables: megaforms.Exp. Math., 12 (2003), 351–364. Zbl 1078.30044, MR 2034398 |
Reference:
|
[22] Sabadini I., Shapiro M., Struppa D. C.: Algebraic analysis of the Moisil-Theodorescu system.Complex Variables Theory Appl. 40 (2000), 333–357. Zbl 1020.30056, MR 1772393 |
Reference:
|
[23] Sabadini I., Sommen F., Struppa D. C., Van Lancker P.: Complexes of Dirac operators in Clifford algebras.Math. Z., 239 (2002), 293–320. Zbl 1078.30045, MR 1888226 |
Reference:
|
[24] Souček V.: Invariant operators and Clifford analysis.Adv. Appl. Clifford Algebras 11 (2001), no. S1, 37–52. Zbl 1221.30117, MR 2106710 |
. |