Previous |  Up |  Next

Article

Title: Algebraic analysis of the Rarita-Schwinger system in real dimension three (English)
Author: Damiano, Alberto
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 5
Year: 2006
Pages: 197-211
Summary lang: English
.
Category: math
.
Summary: In this paper we use the explicit description of the Spin–$\frac{3}{2}$ Dirac operator in real dimension $3$ appeared in (Homma, Y., The Higher Spin Dirac Operators on $3$–Dimensional Manifolds. Tokyo J. Math. 24 (2001), no. 2, 579–596.) to perform the algebraic analysis of the space of nullsolution of the system of equations given by several Rarita–Schwinger operators. We make use of the general theory provided by (Colombo, F., Sabadini, I., Sommen, F., Struppa, D. C., Analysis of Dirac systems and computational algebra, Progress in Mathematical Physics, Vol. 39, Birkhäuser, Boston, 2004.) and some standard Gröbner Bases techniques. Our aim is to show that such operator shares many of the algebraic properties of the Dirac operator in real dimension four. In particular, we prove the exactness of the associated algebraic complex, a duality result and we explicitly describe the space of polynomial solutions. (English)
MSC: 53C27
MSC: 58J60
idZBL: Zbl 1164.53357
idMR: MR2322407
.
Date available: 2008-06-06T22:49:26Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108027
.
Reference: [1] Adams W. W., Berenstein C. A., Loustaunau P., Sabadini I., Struppa D. C.: Regular functions of several quaternionic variables and the Cauchy–Fueter complex.J. Geom. Anal. 9 (1999), 1–16. Zbl 0966.35088, MR 1760717
Reference: [2] Adams W. W., Loustaunau P.: Analysis of the module determining the properties of regular functions of several quaternionic variables.Pacific J. Math. 196 (2000), no. 1, 1–15. MR 1796513
Reference: [3] Bureš J.: The Rarita-Schwinger operator and spherical monogenic forms.Complex Variables Theory Appl. 43 (2000), no. 1, 77–108. Zbl 1026.58025, MR 1809813
Reference: [4] Bureš J., Damiano A., Sabadini I.: Explicit resolutions for the complex several Fueter operators.J. Geom. Phys. 57 3 (2007), 765–775. MR 2275189
Reference: [5] Bureš J., Sommen F., Souček V., Van Lancker P.: Rarita-Schwinger type operators in Clifford analysis.J. Funct. Anal. 185 (2001), no. 2, 425–455. Zbl 1078.30041, MR 1856273
Reference: [6] CoCoATeam: CoCoA.A software package for COmputations in COmmutative Algebra, freely available at http://cocoa.dima.unige.it
Reference: [7] Colombo F., Damiano A., Sabadini I., Struppa D. C.: A surjectivity theorem for differential operators on spaces of regular functions.Complex Variables Theory Appl. 50 (2005), no. 6, 389–400. Zbl 1096.30040, MR 2148589
Reference: [8] Colombo F., Souček V., Struppa D. C.: Invariant resolutions for several Fueter operators.J. Geom. Phys. 56 7 (2006), 1175–1191. Zbl 1103.30031, MR 2234365
Reference: [9] Colombo F., Damiano A., Sabadini I., Struppa D. C.: A new Dolbeault complex in quaternionic and Clifford analysis.to appear in Proceedings Fifth ISAAC Congress, Catania, 2005. Zbl 1185.30052, MR 2148589
Reference: [10] Colombo F., Sabadini I., Sommen F., Struppa D. C.: Analysis of Dirac systems and computational algebra.Progress in Mathematical Physics, Vol. 39, Birkhäuser, Boston, 2004. Zbl 1064.30049, MR 2089988
Reference: [11] Damiano A.: Computational Approach to some Problems in Algebraic Analysis.Ph.D. Dissertation, George Mason University, 2005. MR 2707440
Reference: [12] Damiano A., Mannino S.: CoAlA.A web page for COmputational ALgebraic Analysis available at http://www.tlc185.com/coala.
Reference: [13] Damiano A., Sabadini I., Struppa D. C.: New algebraic properties of biregular functions in $2n$ quaternionic variables.Compl. Var. Ell. Eq. 51 (2006), No. 5–6, 497–510. 2006. Zbl 1184.30047, MR 2230263
Reference: [14] Damiano A., Sabadini I., Struppa D. C.: Computational methods for the construction of a class of noetherian operators.to appear in Exp. Math. Zbl 1136.13014, MR 2312976
Reference: [15] Delanghe R., Sommen F., Soucek V.: Clifford Algebra and Spinor-valued Functions.Math. Appl. 53, Kluwer Academic Publishers, 1992. Zbl 0747.53001, MR 1169463
Reference: [16] Eisenbud D.: The Geometry of Syzygies.Graduate Texts in Mathematics, Vol. 229, Springer-Verlag, New York, 2005. Zbl 1066.14001, MR 2103875
Reference: [17] Homma Y.: The Higher Spin Dirac Operators on $3$–Dimensional Manifolds.Tokyo J. Math. 24 (2001), no. 2, 579–596. Zbl 1021.53026, MR 1874992
Reference: [18] Kreuzer M., Robbiano L.: Computational Commutative Algebra 1.Springer, 2000. MR 1790326
Reference: [19] Kreuzer M., Robbiano L.: Computational Commutative Algebra 2.Springer, 2005. MR 2159476
Reference: [20] Palamodov V. P.: Linear Differential Operators with Constant Coefficients.Springer Verlag, New York 1970. Zbl 0191.43401, MR 0264197
Reference: [21] Sabadini I., Sommen F., Struppa D. C.: The Dirac complex on abstract vector variables: megaforms.Exp. Math., 12 (2003), 351–364. Zbl 1078.30044, MR 2034398
Reference: [22] Sabadini I., Shapiro M., Struppa D. C.: Algebraic analysis of the Moisil-Theodorescu system.Complex Variables Theory Appl. 40 (2000), 333–357. Zbl 1020.30056, MR 1772393
Reference: [23] Sabadini I., Sommen F., Struppa D. C., Van Lancker P.: Complexes of Dirac operators in Clifford algebras.Math. Z., 239 (2002), 293–320. Zbl 1078.30045, MR 1888226
Reference: [24] Souček V.: Invariant operators and Clifford analysis.Adv. Appl. Clifford Algebras 11 (2001), no. S1, 37–52. Zbl 1221.30117, MR 2106710
.

Files

Files Size Format View
ArchMathRetro_042-2006-5_8.pdf 280.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo