Previous |  Up |  Next

Article

Title: Generalized Verma module homomorphisms in singular character (English)
Author: Franek, Peter
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 5
Year: 2006
Pages: 229-240
Summary lang: English
.
Category: math
.
Summary: In this paper we study invariant differential operators on manifolds with a given parabolic structure. The model for the parabolic geometry is the quotient of the orthogonal group by a maximal parabolic subgroup corresponding to crossing of the $k$-th simple root of the Dynkin diagram. In particular, invariant differential operators discussed in the paper correspond (in a flat model) to the Dirac operator in several variables. (English)
MSC: 22Exx
MSC: 58Jxx
idZBL: Zbl 1164.22310
idMR: MR2322409
.
Date available: 2008-06-06T22:49:32Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108029
.
Reference: [1] Cap A., Slovák J.: Parabolic geometries.preprint Zbl 1183.53002
Reference: [2] Eastwood M.: Conformally invariant differential operators on Minkowski space and their curved analogues.Comm. Math. Phys. bf 109 2 (1987), 207–228. Zbl 0659.53047, MR 0880414
Reference: [3] Goodman R., Wallach N.: Representations and invariants of the classical groups.Cambgidge University Press, Cambridge, 1998. Zbl 0901.22001, MR 1606831
Reference: [4] Slovák J., Souček V.: Invariant operators of the first order on manifolds with a given parabolic structure.Seminarires et congres 4, SMF, 2000, 251-276. Zbl 0998.53021, MR 1822364
Reference: [5] Bureš J., Souček V.: Regular spinor valued mappings.Seminarii di Geometria, Bologna 1984, ed. S. Coen, Bologna, 1986, 7–22. MR 0877529
.

Files

Files Size Format View
ArchMathRetro_042-2006-5_10.pdf 261.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo