Previous |  Up |  Next

Article

Title: On second order Hamiltonian systems (English)
Author: Smetanová, Dana
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 5
Year: 2006
Pages: 341-347
Summary lang: English
.
Category: math
.
Summary: The aim of the paper is to announce some recent results concerning Hamiltonian theory. The case of second order Euler–Lagrange form non-affine in the second derivatives is studied. Its related second order Hamiltonian systems and geometrical correspondence between solutions of Hamilton and Euler–Lagrange equations are found. (English)
Keyword: Euler–Lagrange equations
Keyword: Hamiltonian systems
Keyword: Hamilton extremals
Keyword: Dedecker–Hamilton extremals
Keyword: Hamilton equations
Keyword: Lepagean equivalents
MSC: 37J05
MSC: 58E30
MSC: 70S05
idZBL: Zbl 1164.35304
idMR: MR2322420
.
Date available: 2008-06-06T22:50:09Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108040
.
Reference: [1] Krupka D.: Some geometric aspects of variational problems in fibered manifolds.Folia Fac. Sci. Nat. UJEP Brunensis 14 (1973), 1–65.
Reference: [2] Krupková O.: Hamiltonian field theory.J. Geom. Phys. 43 (2002), 93–132. Zbl 1016.37033, MR 1919207
Reference: [3] Krupková O.: Hamiltonian field theory revisited: A geometric approach to regularity.in: Steps in Differential Geometry, Proc. of the Coll. on Differential Geometry, Debrecen 2000 (University of Debrecen, Debrecen, 2001), 187–207. Zbl 0980.35009, MR 1859298
Reference: [4] Krupková O.: Higher-order Hamiltonian field theory.Paper in preparation.
Reference: [5] Saunders D. J.: The geometry of jets bundles.Cambridge University Press, Cambridge, 1989. MR 0989588
Reference: [6] Shadwick W. F.: The Hamiltonian formulation of regular $r$-th order Lagrangian field theories.Lett. Math. Phys. 6 (1982), 409–416. MR 0685846
.

Files

Files Size Format View
ArchMathRetro_042-2006-5_21.pdf 206.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo