Full entry |
PDF
(0.1 MB)
Feedback

countable quotient groups; $\omega $-elongations; $p^{\omega +n}$-totally projective groups; $p^{\omega +n}$-summable groups

References:

[1] Benabdallah K., Eisenstadt B., Irwin J., Poluianov E.: **The structure of large subgroups of primary abelian groups**. Acta Math. Acad. Sci. Hungar. 21 (3-4) (1970), 421–435. MR 0276328 | Zbl 0215.39804

[2] Cutler D.: **Quasi-isomorphism for infinite abelian $p$-groups**. Pacific J. Math. 16 (1) (1966), 25–45. MR 0191954 | Zbl 0136.28904

[3] Danchev P.: **Characteristic properties of large subgroups in primary abelian groups**. Proc. Indian Acad. Sci. Math. Sci. 104 (3) (2004), 225–233. MR 2083463 | Zbl 1062.20059

[4] Danchev P.: **Countable extensions of torsion abelian groups**. Arch. Math. (Brno) 41 (3) (2005), 265–272. MR 2188382 | Zbl 1114.20030

[5] Danchev P.: **A note on the countable extensions of separable $p^{\omega +n}$-projective abelian $p$-groups**. Arch. Math. (Brno) 42 (3) (2006), 251–254. MR 2260384

[6] Danchev P.: **Generalized Wallace theorems**. submitted. Zbl 1169.20029

[7] Danchev P.: **Theorems of the type of Cutler for abelian $p$-groups**. submitted. Zbl 1179.20046

[8] Danchev P.: **Commutative group algebras of summable $p$-groups**. Comm. Algebra 35 (2007). MR 2313667 | Zbl 1122.20003

[9] Danchev P.: **Invariant properties of large subgroups in abelian $p$-groups**. Oriental J. Math. Sci. 1 (1) (2007). MR 2656103 | Zbl 1196.20060

[10] Fuchs L.: **Infinite Abelian Groups**. I and II, Mir, Moskva, 1974 and 1977 (in Russian). MR 0457533 | Zbl 0338.20063

[11] Fuchs L., Irwin J.: **On elongations of totally projective $p$-groups by $p^{\omega +n}$-projective $p$-groups**. Czechoslovak Math. J. 32 (4) (1982), 511–515. MR 0682128

[12] Nunke R.: **Homology and direct sums of countable abelian groups**. Math. Z. 101 (3) (1967), 182–212. MR 0218452 | Zbl 0173.02401

[13] Nunke R.: **Uniquely elongating modules**. Symposia Math. 13 (1974), 315–330. MR 0364491 | Zbl 0338.20018

[14] Wallace K.: **On mixed groups of torsion-free rank one with totally projective primary components**. J. Algebra 17 (4) (1971), 482–488. MR 0272891 | Zbl 0215.39902