Previous |  Up |  Next

Article

Title: $\tau $-supplemented modules and $\tau $-weakly supplemented modules (English)
Author: Koşan, Muhammet Tamer
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 4
Year: 2007
Pages: 251-257
Summary lang: English
.
Category: math
.
Summary: Given a hereditary torsion theory $\tau = (\mathbb {T},\mathbb {F})$ in Mod-$R$, a module $M$ is called $\tau $-supplemented if every submodule $A$ of $M$ contains a direct summand $C$ of $M$ with $A/C$ $\tau -$torsion. A submodule $V$ of $M$ is called $\tau $-supplement of $U$ in $M$ if $U+V=M$ and $U\cap V\le \tau (V)$ and $M$ is $\tau $-weakly supplemented if every submodule of $M$ has a $\tau $-supplement in $M$. Let $M$ be a $\tau $-weakly supplemented module. Then $M$ has a decomposition $M=M_1\oplus M_2$ where $M_1$ is a semisimple module and $M_2$ is a module with $\tau (M_2)\le _e M_2$. Also, it is shown that; any finite sum of $\tau $-weakly supplemented modules is a $\tau $-weakly supplemented module. (English)
Keyword: torsion theory
Keyword: $\tau $-supplement submodule
MSC: 16D10
MSC: 16D50
MSC: 16L60
idZBL: Zbl 1156.16006
idMR: MR2378525
.
Date available: 2008-06-06T22:51:29Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108069
.
Reference: [1] Anderson F. W., Fuller K. R.: Rings and Categories of Modules.Springer-Verlag, New York, 1992. Zbl 0765.16001, MR 1245487
Reference: [2] Clark J., Lomp C., Vanaja N., Wisbauer R.: Lifting Modules.Birkhäuser, Basel, 2006. Zbl 1102.16001, MR 2253001
Reference: [3] Golan J. S.: Torsion Theories.Pitman Monographs and Surveys in Pure and Applied Mathematics 29, New York, John Wiley & Sons, 1986. Zbl 0657.16017, MR 0880019
Reference: [4] Koşan T., Harmanci A.: Modules supplemented with respect to a torsion theory.Turkish J. Math. 28 (2), (2004), 177–184. MR 2062562
Reference: [5] Koşan M. T., Harmanci A.: Decompositions of Modules supplemented with respect to a torsion theory.Internat. J. Math. 16 (1), (2005), 43–52. MR 2115677
Reference: [6] Koşan M. T., Harmanci A.: $\oplus $-supplemented modules relative to a torsion theory.New-Zealand J. Math. 35 (2006), 63–75. Zbl 1104.16026, MR 2222176
Reference: [7] Mohamed S. H., Müller B. J.: Continuous and discrete modules.London Math. Soc. LNS 147, Cambridge Univ. Press, Cambridge (1990). Zbl 0701.16001, MR 1084376
Reference: [8] Smith P. F., Viola-Prioli A. M., and Viola-Prioli J.: Modules complemented with respect to a torsion theory.Comm. Algebra 25 (1997), 1307–1326. MR 1437673
Reference: [9] Stenström B.: Rings of quotients.Springer Verlag, Berlin, 1975. MR 0389953
Reference: [10] Wisbauer R.: Foundations of module and ring theory.Gordon and Breach, Reading, 1991. Zbl 0746.16001, MR 1144522
Reference: [11] Zhou Y.: Generalizations of perfect, semiperfect, and semiregular rings.Algebra Colloquium 7 (3), (2000), 305–318. Zbl 0994.16016, MR 1810586
.

Files

Files Size Format View
ArchMathRetro_043-2007-4_3.pdf 198.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo