Previous |  Up |  Next

Article

Title: Hybrid fixed point theory for right monotone increasing multi-valued mappings and neutral functional differential inclusions (English)
Author: Dhage, B. C.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 4
Year: 2007
Pages: 265-284
Summary lang: English
.
Category: math
.
Summary: In this paper, some hybrid fixed point theorems for the right monotone increasing multi-valued mappings in ordered Banach spaces are proved via measure of noncompactness and they are further applied to the neutral functional nonconvex differential inclusions involving discontinuous multi-functions for proving the existence results under mixed Lipschitz, compactness and right monotonicity conditions. Our results improve the multi-valued hybrid fixed point theorems of Dhage (Dhage, B. C., A fixed point theorem for multivalued mappings on ordered Banach spaces with applications I, Nonlinear Anal. Forum 10 (2005), 105–126.) under weaker convexity conditions. (English)
Keyword: ordered Banach space
Keyword: hybrid fixed point theorem
Keyword: neutral functional differential inclusion and existence theorem
MSC: 34A60
MSC: 34K40
MSC: 47A25
MSC: 47H10
MSC: 47N20
idZBL: Zbl 1164.47056
idMR: MR2378527
.
Date available: 2008-06-06T22:51:35Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108071
.
Reference: [1] Agarwal R. P., Dhage B. C., O’Regan D.: The method of upper and lower solution for differential inclusions via a lattice fixed point theorem.Dynamic Systems Appl. 12 (2003), 1–7. MR 1989018
Reference: [2] Akhmerov P. P., Kamenskii M. I., Potapov A. S., Sadovskii B. N.: Measures of Noncompactness and Condensing Operators.Birkhäuser 1992. MR 1153247
Reference: [3] Andres J., Górniewicz L.: Topological Fixed Point Principles for Boundary Value Problems.Kluwer, 2003. MR 1998968
Reference: [4] Banas J., Lecko M.: Fixed points of the product of operators in Banach algebras.PanAmer. Math. J. 12 (2002), 101–109. MR 1895774
Reference: [5] Covitz H., Nadler S. B., Jr.: Multivalued contraction mappings in generalized metric spaces.Israel J. Math. 8 (1970), 5–11. MR 0263062
Reference: [6] Deimling K.: Multi-valued Differential Equations.De Gruyter, Berlin 1998.
Reference: [7] Dhage B. C.: Multi-valued operators and fixed point theorems in Banach algebras I.Taiwanese J. Math. 10 (4), (2006), 1025–1045. Zbl 1144.47321, MR 2229639
Reference: [8] Dhage B. C.: Multi-valued mappings and fixed points I.Nonlinear Funct. Anal. Appl. 10 (3), (2005), 359–378. Zbl 1100.47040, MR 2194603
Reference: [9] Dhage B. C.: Hybrid fixed point theory for strictly monotone increasing multi-valued mappings with applications.Comput. Math. Appl. 53 (2007), 803–824. Zbl 1144.47041, MR 2327635
Reference: [10] Dhage B. C.: A fixed point theorem for multivalued mappings on ordered Banach spaces with applications I.Nonlinear Anal. Forum 10 (2005), 105–126. MR 2162344
Reference: [11] Dhage B. C.: A general multi-valued hybrid fixed point theorem and perturbed differential inclusions.Nonlinear Anal. 64 (2006), 2747–2772. Zbl 1100.47045, MR 2218544
Reference: [12] Dhage B. C.: Some algebraic fixed point theorems for multi-valued operators with applications.DISC. Math. Differential inclusions, Control & Optimization 26 (2006), 5–55. MR 2330779
Reference: [13] Dhage B. C., Ntouyas S. K.: Existence results for neutral functional differential inclusions.Fixed Point Theory 5 (2005), 235–248. Zbl 1080.34063, MR 2117335
Reference: [14] Dajun Guo, Lakshmikanthm V.: Nonlinear Problems in Abstract Cones.Academic Press, New York–London, 1988.
Reference: [15] Hale J. K.: Theory of Functional Differential Equations.Springer, New York 1977. Zbl 0352.34001, MR 0508721
Reference: [16] Heikkilä S., Lakshmikantham V.: Monotone Iterative Technique for Nonlinear Discontinues Differential Equations.Marcel Dekker Inc., New York, 1994. MR 1280028
Reference: [17] Heikkilä S., Hu S.: On fixed points of multi-functions in ordered spaces.Appl. Anal. 53 (1993), 115–127.
Reference: [18] Hu S., Papageorgiou N. S.,: Handbook of Multivalued Analysis, Vol. I: Theory.Kluwer Academic Publishers, Dordrechet–Boston–London 1997. MR 1485775
Reference: [19] Lasota A., Opial Z.: An application of the Kakutani- Ky Fan theorem in the theory of ordinary differential equations.Bull. Polish Acad. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786. Zbl 0151.10703, MR 0196178
Reference: [20] Ntouyas S. K.: Initial and boundary value problems for functional differential equations via topological transversality method : A Survey.Bull. Greek Math. Soc. 40 (1998), 3–41. MR 1671786
Reference: [21] Petruşel A.: Operatorial Inclusions.House of the Book of Science, Cluj-Napoca, 2002. Zbl 1057.47004, MR 1939244
Reference: [22] Zeidler E.: Nonlinear Functional Analysis and Its Applications: Part I.Springer Verlag, 1985. MR 0768749
.

Files

Files Size Format View
ArchMathRetro_043-2007-4_5.pdf 299.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo