Previous |  Up |  Next


Title: On the finite dimension of attractors of doubly nonlinear parabolic systems with l-trajectories (English)
Author: El Ouardi, Hamid
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 4
Year: 2007
Pages: 289-303
Summary lang: English
Category: math
Summary: This paper is concerned with the asymptotic behaviour of a class of doubly nonlinear parabolic systems. In particular, we prove the existence of the global attractor which has, in one and two space dimensions, finite fractal dimension. (English)
Keyword: doubly nonlinear parabolic systems
Keyword: existence of solutions
Keyword: global and exponential attractor
Keyword: fractal dimension and l-trajectories
MSC: 35B40
MSC: 35B41
MSC: 35K50
MSC: 35K55
MSC: 35K57
MSC: 35K65
MSC: 37L30
idZBL: Zbl 1164.35045
idMR: MR2378529
Date available: 2008-06-06T22:51:41Z
Last updated: 2012-05-10
Stable URL:
Reference: [1] Alt H. W., Luckhaus S.: Quasilinear elliptic and parabolic differential equations.Math. Z. 183 (1983), 311–341. MR 0706391
Reference: [2] Bamberger A.: Etude d’une équation doublement non linéaire.J. Funct. Anal. 24 (1977), 148–155. Zbl 0345.35059, MR 0470490
Reference: [3] Blanchard D., Francfort G.: Study of doubly nonlinear heat equation with no growth assumptions on the parabolic term.Siam. J. Anal. Math. 9 (5), (1988), 1032–1056. MR 0957665
Reference: [4] Diaz J., de Thelin F.: On a nonlinear parabolic problem arising in some models related to turbulent flows.Siam. J. Anal. Math. 25 (4), (1994), 1085–1111. Zbl 0808.35066, MR 1278892
Reference: [5] Diaz J., Padial J. F.: Uniqueness and existence of solutions in the BV$_{t}(Q)$ space to a doubly nonlinear parabolic problem.Publ. Mat. 40 (1996), 527–560. MR 1425634
Reference: [6] Eden A., Michaux B., Rakotoson J. M.: Doubly nonlinear parabolic type equations as dynamical systems.J. Dynam. Differential Equations 3 (1), (1991), 87–131. Zbl 0802.35011, MR 1094725
Reference: [7] Eden A., Michaux B., Rakotoson J. M.: Semi-discretized nonlinear evolution equations as discrete dynamical systems and error analysis.Indiana Univ. Math. J. 39 (3), (1990), 737–783. Zbl 0732.35037, MR 1078736
Reference: [8] El Hachimi A., de Thelin F.: Supersolutions and stabilisation of the solutions of the equation $\ u_{t}-\triangle _{p}u=f(x,u)$, Part I.Nonlinear Anal., Theory Methods Appl. 12 (12), (1988), 1385–1398. MR 0972407
Reference: [9] El Hachimi A., de Thelin F.: Supersolutions and stabilisation of the solutions of the equation $u_{t}-\triangle _{p}u=f(x,u)$, Part II.Publ. Mat. 35 (1991), 347–362. MR 1201561
Reference: [10] El Ouardi H., de Thelin F.: Supersolutions and stabilization of the solutions of a nonlinear parabolic system.Publ. Mat. 33 (1989), 369–381. MR 1030974
Reference: [11] El Ouardi H., El Hachimi A.: Existence and attractors of solutions for nonlinear parabolic systems.Electron. J. Qual. Theory Differ. Equ. 5 (2001), 1–16. MR 1873359
Reference: [12] El Ouardi H., El Hachimi A.: Existence and regularity of a global attractor for doubly nonlinear parabolic equations.Electron. J. Differ. Equ. (45) (2002), 1–15. Zbl 0993.35021, MR 1907721
Reference: [13] El Ouardi H., El Hachimi A.: Attractors for a class of doubly nonlinear parabolic systems.Electron. J. Qual. Theory Differ. Equ. (1) (2006), 1–15. Zbl 1085.35064, MR 2210533
Reference: [14] Dung L.: Ultimate boundedness of solutions and gradients of a class of degenerate parabolic systems.Nonlinear Anal., Theory Methods Appl. 39 (2000), 157–171. MR 1722106
Reference: [15] Dung L.: Global attractors and steady states for a class of reaction diffusion systems.J. Differential Equations 147 (1998), 1–29. MR 1632736
Reference: [16] Lions J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Paris 1969. Zbl 0189.40603, MR 0259693
Reference: [17] Langlais M., Phillips D.: Stabilization of solution of nonlinear and degenerate evolution equatins.Nonlinear Anal., Theory Methods Appl. 9 (1985), 321–333. MR 0783581
Reference: [18] Ladyzhznskaya O., Solonnikov V. A., Outraltseva N. N.: Linear and quasilinear equations of parabolic type.Trans. Amer. Math. Soc. XI, 1968.
Reference: [19] Marion M.: Attractors for reaction-diffusion equation: existence and estimate of their dimension.Appl. Anal. 25 (1987), 101–147. MR 0911962
Reference: [20] Málek J., Pražák D.: Long time behaviour via the method of l-trajectories.J. Differential Equations 18 (2), (2002), 243–279.
Reference: [21] Miranville A.: Finite dimensional global attractor for a class of doubly nonlinear parabolic equations.Central European J. Math. 4 (1), (2006), 163–182. Zbl 1102.35023, MR 2213032
Reference: [22] Foias C., Constantin P., Temam R.: Attractors representing turbulent flows.Mem. Am. Math. Soc. 314 (1985), 67p. Zbl 0567.35070, MR 0776345
Reference: [23] Foias C., Temam R.: Structure of the set of stationary solutions of the Navier-Stokes equations.Commun. Pure Appl. Math. 30 (1977), 149–164. Zbl 0335.35077, MR 0435626
Reference: [24] Simon J.: Régularité de la solution d’un problème aux limites non linéaire.Ann. Fac. Sci. Toulouse Math. (6),(1981), 247–274. MR 0658735
Reference: [25] Schatzman M.: Stationary solutions and asymptotic behavior of a quasilinear parabolic equation.Indiana Univ. Math. J. 33 (1984), 1–29. MR 0726104
Reference: [26] Raviart P. A.: Sur la résolution de certaines équations paraboliques non linéaires.J. Funct. Anal. 5 (1970), 299–328. Zbl 0199.42401, MR 0257585
Reference: [27] Temam R.: Infinite dimensional dynamical systems in mechanics and physics.Appl. Math. Sci. 68, Springer-Verlag 1988. Zbl 0662.35001, MR 0953967
Reference: [28] Tsutsumi M.: On solutions of some doubly nonlinear degenerate parabolic systems with absorption.J. Math. Anal. Appl. 132 (1988), 187–212. MR 0942364


Files Size Format View
ArchMathRetro_043-2007-4_7.pdf 260.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo