Previous |  Up |  Next

Article

Title: Invariance of the Fredholm radius of the Neumann operator (English)
Title: Invariance Fredholmova poloměru Neumannova operátoru (Czech)
Author: Medková, Dagmar
Language: English
Journal: Časopis pro pěstování matematiky
ISSN: 0528-2195
Volume: 115
Issue: 2
Year: 1990
Pages: 147-164
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
MSC: 35J05
idZBL: Zbl 0707.35049
idMR: MR1054002
DOI: 10.21136/CPM.1990.108370
.
Date available: 2009-09-23T09:57:31Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/108370
.
Reference: [AKK1] T. S. Angell R. E. Kleinman J. Král: Double layer potentials on boundaries with corners and edges.Comment. Math. Univ. Carolinae 27 (1989). MR 0981880
Reference: [AKK2] T. S. Angell R. E. Kleinman J. Král: Layer potentials on boundaries with corners and edges.Časopis pěst. mat. 113 (1988), 387-402. MR 0981880
Reference: [DG1] E. De Giorgi: Su una teoria generále della misura (r - l)-dimensionale in uno spazi ad r dimensioni.Annali di Mat. Pura ed Appl. Ser. 4, 36 (1954), 191 - 213. MR 0062214
Reference: [DG2] E. De Giorgi: Nuovi teoremi relativi alle misure (r - l)-dimensionali in uno spazi ad r dimensioni.Ricerche Mat. 4 (1955), 95-113. MR 0074499
Reference: [Do] M. Dont E. Dontová: Invariance of the Fredholm radius of an operator in potential theory.Časopis pěst. mat. 112 (1987), 269-283. MR 0905974
Reference: [Fe1] H. Federer: A note on the Gauss-Green theorem.Proc. Amer. Math. Soc. 9 (1958), 447-451. Zbl 0087.27302, MR 0095245
Reference: [Fe2] H. Federer: Geometric measure theory.Springer-Verlag 1969. Zbl 0176.00801, MR 0257325
Reference: [Fe3] H. Federer: The Gauss-Green theorem.Trans. Amer. Math. Soc. 58 (1945), 44-76. Zbl 0060.14102, MR 0013786
Reference: [K1] J. Král: Integral Operators in Potential Theory.Lecture Notes in Mathematics 823, Springer-Verlag, Berlin 1980. MR 0590244
Reference: [K2] J. Král: Flows of heat and the Fourier problem.Czechoslovak Math. J. 20 (95) (1970), 556-597. MR 0271554
Reference: [K3] J. Král: Note on sets whose characteristic functions have signed measure for their partial derivatives.(Czech). Časopis pěst. mat. 86 (1961), 178-194. MR 0136697
Reference: [K4] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511-547. MR 0209503
Reference: [K5] J. Král: The Fredholm radius of an operator in potential theory.Czechoslovak Math. J. 15 (90) (1965), 565-588. MR 0190363
Reference: [KW] J. Král W. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory.Aplikace Matematiky 31 (1986), 293 - 308. MR 0854323
Reference: [O] M. Ohtsuka: Reading of De Giorgi's papers.Gakushuin University 1980.
.

Files

Files Size Format View
CasPestMat_115-1990-2_5.pdf 1.624Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo