Title:
|
On a set in ${\mathbbm R}^n$ under coordinate transformations (English) |
Author:
|
Miller, Harry I. |
Author:
|
Pal, Mukul |
Language:
|
English |
Journal:
|
Časopis pro pěstování matematiky |
ISSN:
|
0528-2195 |
Volume:
|
109 |
Issue:
|
3 |
Year:
|
1984 |
Pages:
|
225-235 |
. |
Category:
|
math |
. |
MSC:
|
26B10 |
idZBL:
|
Zbl 0561.26009 |
idMR:
|
MR755586 |
DOI:
|
10.21136/CPM.1984.108436 |
. |
Date available:
|
2009-09-23T09:26:14Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/108436 |
. |
Reference:
|
[1] T. Apostol: Mathematical Analysis, second edition.Addison-Wesley, Reading Massachusetts, 1974. MR 0344384 |
Reference:
|
[2] P. Billingsley: Ergodic Theory and Information.Wiley, New York, 1965. Zbl 0141.16702, MR 0192027 |
Reference:
|
[3] P. Billingsley: Measure and Probability.Wiley, New York, 1979. MR 0534323 |
Reference:
|
[4] J. P. Kahane: Some Random Series of Functions.Heath, Lexington Massachusetts, 1968. Zbl 0192.53801, MR 0254888 |
Reference:
|
[5] S. Kurepa: Note on the difference set of two measurable sets in ${\mathbb R}^n.Glasnik Mat. 15 (1960), 99-105. MR 0124456 |
Reference:
|
[6] S. Kurepa: On transformations of measurable sets in $E^n$.Glasnik Mat. 20 (1965), 235-242. MR 0202972 |
Reference:
|
[7] H. I. Miller: On a paper of Saha and Ray.Publ. Inst. Math. 27 (41) (1980), 175- 178. Zbl 0472.28003, MR 0621949 |
Reference:
|
[8] H. I. Miller: On transformations of sets in ${\mathbb R}^n$.Čas. pěst. mat. 106 (1981), 422-430. MR 0637823 |
Reference:
|
[9] T. Neubrunn T. Saldt: Distance sets, ration sets and certain transformations of set of real numbers.Čas. pěst. mat. 94 (1969), 381-393. MR 0257309 |
Reference:
|
[10] M. Pal: On certain transformations of sets in RN.Acta Facult. Rerum Nat. Univ. Comenianae Mathematica, XXIX (1974), 43-53. MR 0377024 |
Reference:
|
[11] S. Piccard: Sur les ensemble de distances des ensembles de points d'un espace Euclidean.Neuchatel, 1933. |
Reference:
|
[12] H. Steinhaus: Sur les distances des points des ensembles de measure positive.Fund. Math. 1 (1920), 93-104. |
. |