Previous |  Up |  Next

Article

Title: Second phase matrix of differential systems $Y'+P(x)Y=0$ (English)
Title: Druhá fázová matice diferenciálního systému $Y'+P(x)Y=0$ (Czech)
Author: Došlý, Ondřej
Language: English
Journal: Časopis pro pěstování matematiky
ISSN: 0528-2195
Volume: 112
Issue: 4
Year: 1987
Pages: 381-389
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
MSC: 34C10
idZBL: Zbl 0631.34043
idMR: MR921328
DOI: 10.21136/CPM.1987.108553
.
Date available: 2009-09-23T09:44:03Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/108553
.
Reference: [1] J. H. Barrett: A Prüfer transformation for matrix differential equations.Proc. Amer. Math Soc. 8 (1957), 510-518. Zbl 0079.10603, MR 0087821
Reference: [2] R. Bellman: Introduction to matrix analysis.McGгaw-Hill, New York. Zbl 0872.15003
Reference: [3] O. Borůvka: Lineaг differential transformations of the second order.Acad. Press, London 1971. MR 0463539
Reference: [4] O. Došlý: A phase matrix of lineaг diffeгential systems.Čas. pěst. mat. 110 (1985), 183-192. MR 0796568
Reference: [5] O. Došlý: The basic properties of the phase matгices of linear differential systems.Arch. Math. 21 (1985), 113-122. MR 0817553
Reference: [6] O. Došlý: On transformations of selfadjoint linear differential systems.Arch. Math. 21 (1985), 159-170. MR 0833126
Reference: [7] O. Došlý: On some properties of trigonometгic matrices.Čas. pěst. mat. 112 (1987), MR 0897644
Reference: [8] G. J. Etgen: Oscillation properties of certain nonlinear matrix differential equations of second order.Trans. Ameг. Math. Soc. 122 (1966), 289-310. MR 0190421
Reference: [9] G. J. Etgen: A note on trigonometric matгices.Proc. Amer. Math. Soc. 17 (1966), 1226 to 1232. MR 0213646
Reference: [10] W. T. Reid: A Prüfer transformation for differential systems.Pacific Ј. Math. 8 (1958), 575-584. Zbl 0102.30004, MR 0099474
.

Files

Files Size Format View
CasPestMat_112-1987-4_8.pdf 881.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo