Title:
|
On the stability of chaotic functions (English) |
Title:
|
O stabilite chaotických funkcií (Slovak) |
Author:
|
Janková, Katarína |
Language:
|
English |
Journal:
|
Časopis pro pěstování matematiky |
ISSN:
|
0528-2195 |
Volume:
|
112 |
Issue:
|
4 |
Year:
|
1987 |
Pages:
|
351-354 |
Summary lang:
|
English |
Summary lang:
|
Slovak |
Summary lang:
|
Russian |
. |
Category:
|
math |
. |
MSC:
|
26A18 |
idZBL:
|
Zbl 0639.26005 |
idMR:
|
MR921323 |
DOI:
|
10.21136/CPM.1987.108561 |
. |
Date available:
|
2009-09-23T09:43:31Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/108561 |
. |
Reference:
|
[1] Bau Sen Du: A chaotic function whose nonwandering set is the Cantor ternary set.Proc. Amer. Math. Soc. 92 (1984), 277-278. Zbl 0592.26007, MR 0754720 |
Reference:
|
[2] I. Kan: A chaotic function possessing a scrambled set of positive Lebesgue measure.Proc. Amer. Math. Soc. 92 (1984), 45-49. MR 0749887 |
Reference:
|
[3] P. E. Kloeden: Chaotic diffeгence equations are dense.Bull. Austral. Math. Soc. 15 (1976), 371-379. MR 0432829 |
Reference:
|
[4] T. Li Y. Yorke: Period three implies chaos.Ameг. Math. Monthly 82 (1975), 985-992. Zbl 0351.92021, MR 0385028 |
Reference:
|
[5] M. Misiurewicz: Chaos almost everywhere. Iteration Theoгy and its Functional Equations.(editor Liedl et al.), Lecture notes in mathematics (Spгingeг 1985). MR 0829765 |
Reference:
|
[6] M. B. Nathanson: Piecewise linear functions with almost all points eventually periodic.Proc. Amer. Math. Soc. 60 (1976), 75-81. MR 0417351 |
Reference:
|
[7] J. Smítal: A chaotic function with some extremal properties.Proc. Amer. Math. Soc. 87 (1983), 54-56. MR 0677230 |
Reference:
|
[8] J. Smítal: A chaotic function with a scrambled set of positive Lebesgue measure.Proc. Amer. Math. Soc. 92 (1984), 50-54. MR 0749888 |
. |