Previous |  Up |  Next

Article

Title: On the stability of chaotic functions (English)
Title: O stabilite chaotických funkcií (Slovak)
Author: Janková, Katarína
Language: English
Journal: Časopis pro pěstování matematiky
ISSN: 0528-2195
Volume: 112
Issue: 4
Year: 1987
Pages: 351-354
Summary lang: English
Summary lang: Slovak
Summary lang: Russian
.
Category: math
.
MSC: 26A18
idZBL: Zbl 0639.26005
idMR: MR921323
DOI: 10.21136/CPM.1987.108561
.
Date available: 2009-09-23T09:43:31Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/108561
.
Reference: [1] Bau Sen Du: A chaotic function whose nonwandering set is the Cantor ternary set.Proc. Amer. Math. Soc. 92 (1984), 277-278. Zbl 0592.26007, MR 0754720
Reference: [2] I. Kan: A chaotic function possessing a scrambled set of positive Lebesgue measure.Proc. Amer. Math. Soc. 92 (1984), 45-49. MR 0749887
Reference: [3] P. E. Kloeden: Chaotic diffeгence equations are dense.Bull. Austral. Math. Soc. 15 (1976), 371-379. MR 0432829
Reference: [4] T. Li Y. Yorke: Period three implies chaos.Ameг. Math. Monthly 82 (1975), 985-992. Zbl 0351.92021, MR 0385028
Reference: [5] M. Misiurewicz: Chaos almost everywhere. Iteration Theoгy and its Functional Equations.(editor Liedl et al.), Lecture notes in mathematics (Spгingeг 1985). MR 0829765
Reference: [6] M. B. Nathanson: Piecewise linear functions with almost all points eventually periodic.Proc. Amer. Math. Soc. 60 (1976), 75-81. MR 0417351
Reference: [7] J. Smítal: A chaotic function with some extremal properties.Proc. Amer. Math. Soc. 87 (1983), 54-56. MR 0677230
Reference: [8] J. Smítal: A chaotic function with a scrambled set of positive Lebesgue measure.Proc. Amer. Math. Soc. 92 (1984), 50-54. MR 0749888
.

Files

Files Size Format View
CasPestMat_112-1987-4_3.pdf 517.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo