Previous |  Up |  Next

Article

Title: Translative packing of a convex body by sequences of its homothetic copies (English)
Author: Januszewski, Janusz
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 2
Year: 2008
Pages: 89-92
Summary lang: English
.
Category: math
.
Summary: Every sequence of positive or negative homothetic copies of a planar convex body $C$ whose total area does not exceed $0.175$ times the area of $C$ can be translatively packed in $C$. (English)
Keyword: translative packing
Keyword: convex body
MSC: 52C15
idZBL: Zbl 1212.52020
idMR: MR2432845
.
Date available: 2008-07-24T13:17:36Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/116925
.
Reference: [1] Böröczky, Jr.: Finite packing and covering.Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge 154 (2004). Zbl 1061.52011, MR 2078625
Reference: [2] Januszewski, J.: A note on translative packing a triangle by sequences of its homothetic copies.Period. Math. Hungar. 52 (2) (2006), 27–30. Zbl 1127.52023, MR 2265648, 10.1007/s10998-006-0010-7
Reference: [3] Januszewski, J.: Translative packing of a convex body by sequences of its positive homothetic copies.Acta Math. Hungar. 117 (4) (2007), 349–360. Zbl 1174.52010, MR 2357419, 10.1007/s10474-007-6121-7
Reference: [4] Lassak, M.: Approximation of convex bodies by rectangles.Geom. Dedicata 47 (1993), 111–117. Zbl 0779.52007, MR 1230108, 10.1007/BF01263495
Reference: [5] Meir, A., Moser, L.: On packing of squares and cubes.J. Combin. Theory 5 (1968), 126–134. MR 0229142, 10.1016/S0021-9800(68)80047-X
Reference: [6] Moon, J. W., Moser, L.: Some packing and covering theorems.Colloq. Math. 17 (1967), 103–110. Zbl 0152.39502, MR 0215197
Reference: [7] Novotny, P.: A note on packing clones.Geombinatorics 11 (1) (2001), 29–30. Zbl 1005.52010, MR 1837580
.

Files

Files Size Format View
ArchMathRetro_044-2008-2_1.pdf 406.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo