Previous |  Up |  Next

Article

Title: Conditional oscillation of half-linear differential equations with periodic coefficients (English)
Author: Hasil, Petr
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 2
Year: 2008
Pages: 119-131
Summary lang: English
.
Category: math
.
Summary: We show that the half-linear differential equation \[ \big [r(t)\Phi (x^{\prime })\big ]^{\prime } + \frac{s(t)}{t^p} \Phi (x) = 0 \ast \] with $\alpha $-periodic positive functions $r, s$ is conditionally oscillatory, i.e., there exists a constant $K>0$ such that () with $\frac{\gamma s(t)}{t^p}$ instead of $\frac{s(t)}{t^p}$ is oscillatory for $\gamma > K$ and nonoscillatory for $\gamma < K$. (English)
Keyword: oscillation theory
Keyword: conditional oscillation
Keyword: half-linear differential equations
MSC: 34C10
idZBL: Zbl 1212.34110
idMR: MR2432849
.
Date available: 2008-07-24T13:17:52Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/116929
.
Reference: [1] Došlý, O., Řehák, P.: Half-Linear Differential Equations.Elsevier, Mathematics Studies 202, 2005. Zbl 1090.34001, MR 2158903
Reference: [2] Schmidt, K. M.: Oscillation of the perturbed Hill equation and the lower spectrum of radially periodic Schrödinger operators in the plane.Proc. Amer. Math. Soc. 127 (1999), 2367–2374. Zbl 0918.34039, MR 1626474, 10.1090/S0002-9939-99-05069-8
.

Files

Files Size Format View
ArchMathRetro_044-2008-2_5.pdf 485.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo