Article
Keywords:
Weil bundle; fiber product preserving bundle functor; action of smooth category
Summary:
First of all, we find some further properties of the characterization of fiber product preserving bundle functors on the category of all fibered manifolds in terms of an infinite sequence $A$ of Weil algebras and a double sequence $H$ of their homomorphisms from [5]. Then we introduce the concept of Weilian prolongation $W_H^A S$ of a smooth category $S$ over ${\mathbb{N}}$ and of its action $D$. We deduce that the functor $(A,H)$ transforms $D$-bundles into $W_H^AD$-bundles.
References:
                        
[2] Kolář, I.: 
Handbook of Global Analysis. ch. Weil Bundles as Generalized Jet Spaces, pp. 625–664, Elsevier, 2008. 
MR 2389643[3] Kolář, I., Michor, P. W., Slovák, J.: 
Natural Operations in Differential Geometry. Springer-Verlag, 1993. 
MR 1202431[5] Kolář, I., Mikulski, W. M.: 
Fiber product preserving bundle functors on all morphisms of fibered manifolds. Arch. Math. (Brno) 42 (2006), 285–293. 
MR 2260388 | 
Zbl 1164.58306[6] Weil, A.: 
Théorie des points proches sur les variétés différentielles. Colloque de topol. et géom. diff., Strasbourg (1953), 111–117. 
MR 0061455