Previous |  Up |  Next

Article

Title: Invariance of $g$-natural metrics on linear frame bundles (English)
Author: Kowalski, Oldřich
Author: Sekizawa, Masami
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 2
Year: 2008
Pages: 139-147
Summary lang: English
.
Category: math
.
Summary: In this paper we prove that each $g$-natural metric on a linear frame bundle $LM$ over a Riemannian manifold $(M, g)$ is invariant with respect to a lifted map of a (local) isometry of the base manifold. Then we define $g$-natural metrics on the orthonormal frame bundle $OM$ and we prove the same invariance result as above for $OM$. Hence we see that, over a space $(M, g)$ of constant sectional curvature, the bundle $OM$ with an arbitrary $g$-natural metric $\tilde{G}$ is locally homogeneous. (English)
Keyword: Riemannian manifold
Keyword: linear frame bundle
Keyword: orthonormal frame bundle
Keyword: $g$-natural metrics
Keyword: homogeneity
MSC: 53C07
MSC: 53C20
MSC: 53C21
MSC: 53C40
idZBL: Zbl 1212.53042
idMR: MR2432851
.
Date available: 2008-07-24T13:18:00Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/116931
.
Reference: [1] Abbassi, M. T. K.: Note on the classification theorems of $g$-natural metrics on the tangent bundle of a Riemannian manifolds $(M,g)$.Comment. Math. Univ. Carolin. 45 (2004), 591–596. MR 2103077
Reference: [2] Cordero, L. A., de León, M.: Lifts of tensor fields to the frame bundle.Rend. Circ. Mat. Palermo 32 (1983), 236–271. MR 0729099, 10.1007/BF02844834
Reference: [3] Cordero, L. A., de León, M.: On the curvature of the induced Riemannian metric on the frame bundle of a Riemannian manifold.J. Math. Pures Appl. 65 (1986), 81–91. MR 0844241
Reference: [4] Cordero, L. A., Dodson, C. T. J., de León, M.: Differential Geometry of Frame Bundles.Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1989. MR 0980716
Reference: [5] Jensen, G.: The scalar curvature of left invariant Riemannian metrics.Indiana Univ. Math. J. 20 (1971), 1125–1143. Zbl 0219.53044, MR 0289726, 10.1512/iumj.1971.20.20104
Reference: [6] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.Springer-Verlag, Berlin-Heidelberg-New York, 1993. MR 1202431
Reference: [7] Kowalski, O., Sekizawa, M.: Invariance of $g$-natural metrics on tangent bundles.to appear in Proceedings of 10th International Conference on Differential Geometry and Its Applications, World Scientific. MR 2462791
Reference: [8] Kowalski, O., Sekizawa, M.: On the geometry of orthonormal frame bundles.to appear in Math. Nachr. Zbl 1158.53015, MR 2473330
Reference: [9] Kowalski, O., Sekizawa, M.: On the geometry of orthonormal frame bundles II.to appear in Ann. Global Anal. Geom. Zbl 1141.53023, MR 2395192
Reference: [10] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on linear frame bundles—a classification.Differential Geometry and its Applications, Proceeding of the Conference, August 24–30, 1986, Brno, Czechoslovakia, D. Reidel Publ. Comp., pp. 149-178, 1987. Zbl 0632.53040, MR 0923348
Reference: [11] Kowalski, O., Sekizawa, M.: On curvatures of linear frame bundles with naturally lifted metrics.Rend. Sem. Mat. Univ. Politec. Torino 63 (2005), 283–295. Zbl 1141.53020, MR 2202049
Reference: [12] Krupka, D.: Elementary theory of differential invariants.Arch. Math. (Brno) 4 (1978), 207–214. Zbl 0428.58002, MR 0512763
Reference: [13] Krupka, D.: Differential invariants.Lecture Notes, Faculty of Science, Purkyně University, Brno (1979).
Reference: [14] Krupka, D., Janyška, J.: Lectures on Differential Invariants.University J. E. Purkyně in Brno, 1990. MR 1108622
Reference: [15] Krupka, D., V. Mikolášová, : On the uniqueness of some differential invariants: $d$, [ , ], $\nabla $.Czechoslovak Math. J. 34 (1984), 588–597. MR 0764440
Reference: [16] Mok, K. P.: On the differential geometry of frame bundles of Riemannian manifolds.J. Reine Angew. Math. 302 (1978), 16–31. Zbl 0378.53016, MR 0511689
Reference: [17] O’Neill, B.: The fundamental equations of a submersion.Michigan Math. J. 13 (1966), 459–469. MR 0200865, 10.1307/mmj/1028999604
Reference: [18] Zou, X.: A new type of homogeneous spaces and the Einstein metrics on $O(n+1)$.Nanjing Univ. J. Math. Biquarterly 23 (2006), 70–78. Zbl 1192.53055, MR 2245416
.

Files

Files Size Format View
ArchMathRetro_044-2008-2_7.pdf 451.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo