Previous |  Up |  Next

Article

Title: Harmonic functions on convex sets and single layer potentials (English)
Author: Pokorná, Eva
Language: English
Journal: Časopis pro pěstování matematiky
ISSN: 0528-2195
Volume: 102
Issue: 1
Year: 1977
Pages: 50-60
.
Category: math
.
MSC: 31B15
idZBL: Zbl 0346.31003
idMR: MR0444976
DOI: 10.21136/CPM.1977.117946
.
Date available: 2009-09-23T08:47:48Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/117946
.
Reference: [1] H. Bauer: Нaгmonisсhе Räumе und ihrе Potеntialthеoriе.Springег Vегlag, Bеrlin, 1966.
Reference: [2] S. Dümmel: On invеrsе pгoblеms for k-dimеnsional potеntials.Nonlinеar ҽvolution еquations and potеntial thеory (pp. 73-93), Aсadеmia, Praha, 1975.
Reference: [3] G. C. Evans: The logarithmic potential.(Discontinuous Dirichlet and Neumann problems), AMM Colloquium Publications, VI, New York, 1927.
Reference: [4] G. A. Garrett: Necessary and sufficient conditions for potentials of single and double layers.Amer. J. Math. 58 (1936), 95-129. Zbl 0013.26603, MR 1507136
Reference: [5] L. L. Helms: Introduction to potential theory.Wiley-Interscience, New York, 1969. Zbl 0188.17203, MR 0261018
Reference: [6] R. A. Hunt, R. L. Wheeden: Positive harmonic functions on Lipschitz domains.Trans. Amer. Math. Soc. 147 (1970), 507-527. Zbl 0193.39601, MR 0274787
Reference: [7] D. V. Kapánadze, I. N. Karcivadze: Potentials in a domain with noncompact boundary.(Russian), Thbilis. Sahelmc. Univ. Gamoqeneb. Math. Inst. Šrom. 2 (1969), 13-19. MR 0276486
Reference: [8] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511-547. MR 0209503
Reference: [9] J. Král, J. Mařík: Integration with respect to the Hausdorff measure over a smooth surface.(Czech), Časopis Pěst. Mat. 89 (1964), 433-448. MR 0181730
Reference: [10] J. Matyska: Approximate differential and Federer normal.Czech. Math. J. 17 (92) (1967), 97-107. Zbl 0162.07601, MR 0207926
Reference: [11] I. Netuka: Generalized Robin problem in potential theory.Czech. Math. J. 22 (97) (1972), 312-324. Zbl 0241.31008, MR 0294673
Reference: [12] I. Netuka: An operator connected with the third boundary value problem in potential theory.Czech. Math. J. 22 (97) (1972), 462-489. Zbl 0241.31009, MR 0316733
Reference: [13] I. Netuka: The third boundary value problem in potential theory.Czech. Math. J. 22 (97) (1972), 554-580. Zbl 0242.31007, MR 0313528
Reference: [14] I. Netuka: Fredholm radius of a potential theoretic operator for convex sets.Časopis Pěst. Mat. 100 (1975), 374-383. Zbl 0314.31006, MR 0419794
Reference: [15] E. D. Solomencev: Harmonic functions representable by Green's type integrals II.(Russian), Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 834-854.
Reference: [16] Ch. de la Vallé Poussin: Le potential logarithmique.Gauthier-Villars, Paris, 1949.
.

Files

Files Size Format View
CasPestMat_102-1977-1_7.pdf 1.278Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo