Previous |  Up |  Next

Article

Title: Nonlinear potential equations with linear parts at resonance (English)
Author: Fučík, Svatopluk
Language: English
Journal: Časopis pro pěstování matematiky
ISSN: 0528-2195
Volume: 103
Issue: 1
Year: 1978
Pages: 78-94
.
Category: math
.
MSC: 47J05
idZBL: Zbl 0398.47038
idMR: MR0482425
DOI: 10.21136/CPM.1978.117962
.
Date available: 2009-09-23T08:52:52Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/117962
.
Reference: [1] S. Ahmad A. C. Lazer J. L. Paul: Elementary critical point theory and perturbations of elliptic boundary value problems at resonance.Indiana Univ. Math. Jour. 25, 1976, 933- 944. MR 0427825
Reference: [2] A. Ambrosetti-G. Mancini: Existence and multiplicity results for nonlinear elliptic problems with linear part at resonance. I: The case of simple eigenvalue.(to appear). MR 0492839
Reference: [3] A. Ambrosetti-G. Mancini: Theorems of existence and multiplicity for nonlinear elliptic problems with noninvertible linear part.(to appear). Zbl 0375.35024, MR 0487001
Reference: [4] H. Brezis, L. Nirenberg: Characterizations of the ranges of some nonlinear operators and applications to boundary value problems.(to appear). Zbl 0386.47035, MR 0513090
Reference: [5] S. Fučík: Further remark on a theorem by E. M. Landesman and A. C Lazer.Comment. Math. Univ. Carolinae I5, 1974, 259-271. MR 0348260
Reference: [6] S. Fučík: Surjectivity of operators involving linear noninvertible part and nonlinear compact perturbation.Funkcialaj Ekvacioj 17, 1974, 73-83. MR 0365255
Reference: [7] S. Fučík: Nonlinear equations with noninvertible linear part.Czech. Math. Journal 24, 1974, 467-495. MR 0348568
Reference: [8] S. Fučík: Remarks on some nonlinear boundary value problems.Comment. Math. Univ. Carolinae I 7, 1976, 721-730. MR 0427724
Reference: [9] S. Fučík, M. Krbec: Boundary value problem with bounded nonlinearity and general null- space of the linear part.Math. Z. I55, 1977, 129-138. MR 0473513
Reference: [10] S. Fučík, M. Kučera-J. Nečas: Ranges of nonlinear asymptotically linear operators.J. Differential Equations 17, 1975, 375-394. MR 0372696
Reference: [11] R. E. Gaines-J. L. Mawhin: Coincidence degree, and nonlinear differential equations.Lecture Notes in Mathematics No 568. Springer Verlag 1977. Zbl 0339.47031, MR 0637067
Reference: [12] P. Hess: A remark on a preceding paper of Fučík and Krbec.Math. Z. I55,1977,139-141. MR 0473514
Reference: [13] J. L. Kazdan, F. W. Warner: Remarks on quasilinear elliptic equations.Comm. Pure Appl. Math. 28, 1975,567-597. MR 0477445
Reference: [14] E. M. Landesman, A. C. Lazer: Nonlinear perturbations of linear elliptic boundary value problems at resonance.J. Math. Mech. IP, 1970, 609-623. Zbl 0193.39203, MR 0267269
Reference: [15] J. Nečas: Les merhodes directes en theorie des Equations elliptiques.Academia, Prague 1967. MR 0227584
Reference: [16] J. Nečas: On the range of nonlinear operators with linear asymptotes which are not in- vertible.Comment. Math. Univ. Carolinae I4, 1973, 63-72. MR 0318995
.

Files

Files Size Format View
CasPestMat_103-1978-1_11.pdf 1.262Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo