Previous |  Up |  Next

Article

Title: An approximate method for determination of eigenvalues and eigenvectors of self-adjoint operators (English)
Author: Kolomý, Josef
Language: English
Journal: Časopis pro pěstování matematiky
ISSN: 0528-2195
Volume: 106
Issue: 3
Year: 1981
Pages: 243-255
.
Category: math
.
MSC: 49R50
idZBL: Zbl 0468.49024
idMR: MR629723
DOI: 10.21136/CPM.1981.118098
.
Date available: 2009-09-23T09:10:01Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/118098
.
Reference: [1] J. Kolomý: Approximate determination of eigenvalues and eigenvectors of self-adjoint operators.Ann, Pol, Math. 38 (1980), 153-158. MR 0599239
Reference: [2] J. Kolomý: On determination of eigenvalues and eigenvectors of self-adjoint operators.Apl. mat. 26 (1981), 161-170. MR 0615603
Reference: [3] J. Kolomý: Determination of eigenvalues and eigenvectors of self-adjoint operators.Mathematica 22 (1980), 53-58. MR 0618027
Reference: [4] М. А. Красносельский, другие: Приближенное ршение операторных уравнений.Изд. Наука, Москва, 1969. Zbl 1149.62317
Reference: [5] I. Marek: Iterations of linear bounded operators in nonself-adjoint eigenvalue problems and Kellog's iteration process.Czech. Math. J. 12 (1962), 536-554. MR 0149297
Reference: [6] W. V. Petryshyn: On the eigenvalue problem $T(u) - \lambda S(u) = 0$ with unbounded and symmetric operators $T$ and $S$.Phil. Trans. Royal Soc. London Ser. A, Math. Phys. Sci., No 1130, Vol. 262 (1968), 413-458. MR 0222697
Reference: [7] V. Pták J. Zemánek: Continuity Lipschitzienne du spectre comme function d'un operateur normal.Comment. Math. Univ. Carolinae 17 (1976), 507-512. MR 0493433
Reference: [8] В. П. Пугачев: О двух приемах приближенного вычисления собственных значений и сообственных векторов.Докл. акад. СССР, 110 (1956), 334-337. Zbl 0995.90522, MR 0084182
Reference: [9] Б. П. Пугачев: Исследование одного метода приближенного вычисления собственных чисел и сообственных векторов.Труды сем. по функц. анал. Воронеж, T. 4 (1960), 81-97. Zbl 1004.90500
Reference: [10] F. Riesz B. Sz.-Nagy: Lesons d'analyse fonctionnelle.Ac. Sci. de Hongrif, Budapest, 1953.
Reference: [11] Wang Jin-ru: A gradient method for finding the eigenvalues and eigenvectors of a self-adjoint operator.Acta Math. Sinica 13 (1963), 23-28 (Chinese Math. Acta 4 (1963), 24-30). MR 0163431
Reference: [12] K. Yosida: Functional Analysis.Springer-Verlag, Berlin, 1965. Zbl 0126.11504
.

Files

Files Size Format View
CasPestMat_106-1981-3_4.pdf 1.215Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo