Previous |  Up |  Next

Article

Title: The isoperimetric inequality for a pentagon in $E_3 $ and its generalization in $E\sb n $space (English)
Author: Kočandrlová, Milada
Language: English
Journal: Časopis pro pěstování matematiky
ISSN: 0528-2195
Volume: 107
Issue: 2
Year: 1982
Pages: 167-174
.
Category: math
.
MSC: 52A40
idZBL: Zbl 0496.52009
idMR: MR659747
DOI: 10.21136/CPM.1982.118118
.
Date available: 2009-09-23T09:14:30Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/118118
.
Reference: [1] E. Egervary: On the smallest convex cover of a simple arc of space-curve.Publ. math., Debrecen, I (1949), 65-70. Zbl 0038.10201, MR 0036021
Reference: [2] M. G. Krein A. A. Nudeľman: Problem of the Мarkovian moments and the extremum problems.(Russian), Moscow (1973), 137-148.
Reference: [3] Z. A. Melzak: The isoperimetric problem of the convex hull of a closed space curve.Proc. Аmer. Math. Soc. II (1960), 265-274. Zbl 0129.37401, MR 0116263
Reference: [4] Z. A. Melzak: Existence of periodic solutions.Communic. on pure and appl. math. 20 (1967), 771-774. Zbl 0168.34004, MR 0214865
Reference: [5] Z. A. Melzak: Numerical evaluation of an isoperimetric constant.Math. of computation, 22, No 101 (1968), 188-190. Zbl 0157.52602, MR 0223976
Reference: [6] A. A. Nudeľman: Isoperimetric problems for the convex hulls of polygonal lines and curves in higher-dimensional spaces.(Russian), Math. sb., (N.S) 96 (138) (1973), 294-313, 344. MR 0375090
Reference: [7] I. J. Schoenberg: Аn isoperimetric inequality for closed curves convex in even dimensional Euclidean spaces.Аcta Math., 91 (1954), 143-164. MR 0065944
.

Files

Files Size Format View
CasPestMat_107-1982-2_8.pdf 732.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo