Previous |  Up |  Next

Article

Title: On a codimension three bifurcation (English)
Author: Medveď, Milan
Language: English
Journal: Časopis pro pěstování matematiky
ISSN: 0528-2195
Volume: 109
Issue: 1
Year: 1984
Pages: 3-26
.
Category: math
.
MSC: 37G99
idZBL: Zbl 0542.58022
idMR: MR741206
DOI: 10.21136/CPM.1984.118193
.
Date available: 2009-09-23T09:23:53Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/118193
.
Reference: [1] B. И. Apнoльд: Лeкции o бифypкaцияx и вepcaльныx ceмeйcтвax.УMH 27, вып. 5 (1972), 119-185.
Reference: [2] B. И. Apнoльд: Дoпoлнитeльныe глaвы тeopии oбыкнoвeнныx диффepeнциaльныx ypaвнeний.Hayкa, Mocквa 1978.
Reference: [3] P. И. Бoгдaнoв: Bepcaльнaя дeфopмaция ocoбoй тoчки вeктopнoгo пoля нa плocкocти cлyчae нyлeвыx coбcтвeнныx чиceл.Tpyды ceминapa им. И. Г. Пeтpoвcкoгo, вып. 2, Изд-вo Mocк. yн-тa (1976), 37-65.
Reference: [4] J. Carr: Applications of center manifold theory.Appl. Math. Sciences 35, Springer-Verlag, New York 1981. MR 0635782
Reference: [5] S. N. Chow J. K. Hale: Bifurcation and nonlinear oscillations.Prepгint, Lefschetz Center for Dynamical Ѕystems, 1980.
Reference: [6] S. N. Chow J. Hale: Metһоds оf Bifurcatiоn Theогy.Ѕpringer-Verlag, New Yогk 1982. MR 0660633
Reference: [7] H. K. Гaвpuлoв: O нeкотоpыx бифypкaцияx cоcтояния paвновecия c одним нyлeвым и пapой чиcто мнимыx коpнeй.Сб. Meтоды кaчeтcвeнной тeоpии диффepeнциaльныx ypaвнeний, Гоpький 1978, 33-40.
Reference: [8] J. Guckenheimer: On a cоdimensiоn twо bifurcatiоn.Prepгint, University оf Сalifоmia at Ѕanta Сгuz, Сalifоrnia 1979.
Reference: [9] J. Guckenheimer: Multiple Bifuгcatiоn Pгоblems оf Соdimensiоn Twо.Prepгint 1980.
Reference: [10] P. Holmes: Unfоlding a degenerate nоnlinear оscillatоr: a cоdimensiоn twо bifurcatiоn.Annals оf the New Yогk Acad. оf Ѕci., Vоl. 357 (1980), 473-488. MR 0612840
Reference: [11] P. Holmes: A Ѕtrange Family оf Three-Dimensiоnal Vectоr Fields Near a Degenerate Ѕingularity.Ј. Differential Equatiоns 37 (1980), 382-403. MR 0589999
Reference: [12] P. Holmes: Сenter manifоlds, nоrmal fогms and bifurcatiоns оf vectоr fields with aplicatiоns tо cоupling between periоdic and steady mоtiоns.Physica 2D (1981), 449-481.
Reference: [13] Y.-C. Lu: Singularity Theory and an Introduction to Сatastrophe Theory.Springer-Verlag, Berlin 1976. MR 0461562
Reference: [14] B. Malgrange: Ideals of differentiable functions.Oxford Univ. Press 1966. Zbl 0177.17902, MR 0212575
Reference: [15] M. Meдвeдъ: Beктopныe пoля c ocoбeннocтью кopaзмepнocти 3 и иx пapaмeтpичecкиe дeфopмaции.Сбopник 9. мeждyнapoднoй кoнфepeнции пo нeлинeйным кoлeбaниям, Kиeв 1981.
Reference: [16] M. Medveď: On codimension three bifurcation of a family of three-dimensional vector fields.Proceedings of the Сonference on Differential Equations-Equadiff 82, Würzburg 1982, Springer-Verlag 1983, 453-461. MR 0726604
.

Files

Files Size Format View
CasPestMat_109-1984-1_2.pdf 2.439Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo