Previous |  Up |  Next

Article

Title: A Hamiltonian cycle and a $1$-factor in the fourth power of a graph (English)
Author: Wisztová, Elena
Language: English
Journal: Časopis pro pěstování matematiky
ISSN: 0528-2195
Volume: 110
Issue: 4
Year: 1985
Pages: 403-412
.
Category: math
.
MSC: 05C45
idZBL: Zbl 0599.05042
idMR: MR820332
DOI: 10.21136/CPM.1985.118240
.
Date available: 2009-09-23T09:34:09Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/118240
.
Reference: [1] M. Behzad, G. Chartrand: Intгoduction to the Theoгy of Gгaphs.Allyn and Bacon, Boston 1971. MR 0432461
Reference: [2] G. Chartrand A. D. Polimeni, M. J. Stewart: The existence of 1-factoгs in line graphs, squaгes, and total graphs.Indagationes Мath. 35 (1973), 228-232. MR 0321809, 10.1016/1385-7258(73)90007-3
Reference: [3] F. Harary: Graph Theoгy.Аddison-Wesley, Reading, Mass. 1969.
Reference: [4] L. Nebeský: On the existence of a 3-factoг in the fouгth poweг of a gгaph.Čas. pěst. mat. 105 (1980), 204-207. MR 0573113
Reference: [5] L. Nebeský, E. Wisztová: Regular factoгs in poweгs of graphs.Čas. pěst. mat. 106 (1981), 52-59. MR 0613706
Reference: [б] L. Nebeský, E. Wisztová: Two edge-disjoint hamiltonian cycles of powers of a graph.Submitted.
Reference: [7] M. Sekanina: On an ordering of the set of vertices of a connected graph.Publ. Sci. Univ. Brno 412 (1960), 137-142. Zbl 0118.18903, MR 0140095
Reference: [8] D. P. Sumner: Graphs with 1-factors.Proc. Аmer. Math. Soc. 42 (1974), 8-12. Zbl 0293.05157, MR 0323648
.

Files

Files Size Format View
CasPestMat_110-1985-4_11.pdf 1.097Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo