Previous |  Up |  Next

Article

References:
[1] G. Bennett N. J. Kalton: Inclusion theorems for K-spaces. Canad. Ј. Math. 25 (1973), 511-524. MR 0322474
[2] G. Bennett N. J. Kalton: Consistency theorems for almost convergence. Trans. Amer. Math. Soc. 198(1974), 23-43. MR 0352932
[3] G. Bennett: Some inclusion theoгems for sequence spaces. Pacific Ј. Math. 46 (1973), 17-30. MR 0331007
[4] C. Bessaga A. Pelczynski: On bases and unconditional conveгgence in Banach spaces. Studia Math. 17 (1958), 151-164. MR 0115069
[5] D. J. H. Garling: The ß- and y-duality of sequence spaces. Proc. Cambridge Philos. Soc. 63 (1967), 963-981. MR 0218881
[6] D. J. H. Garling: On topological sequence spaces. Pгoc. Cambгidge Philos. Soc. 63 (1967), 997-1019. MR 0218880 | Zbl 0161.10305
[7] M. Gupta P. K. Kantham: Dominating sequences and functional equations. Peгiod. Мath. Нungar. 15 (1984), 219-231. MR 0756187
[8] H. Jarchow: Locally Convex Spaces. Teubner, Stuttgart (1981). MR 0632257 | Zbl 0466.46001
[9] G. Köthe: Topological Vector Spaces (I, II). Springer-Verlag, Berlin, Heidelberg, New York (1969, 79). MR 0248498
[10] G. G. Lorentz: A contribution to the theory of divergent series. Acta Math. 80 (1984), 167-190. MR 0027868
[11] I. J. Maddox: Series in locally convex spaces and inclusions between FK-spaces. Pгoc. Cambridge Philos. Soc. 95 (1984), 467-472. MR 0755836 | Zbl 0563.46007
[12] H. H. Schaefer: Sequence spaces with a given Köthe β-dual. Math. Ann. 189 (1970), 235-241. MR 0275109
[13] I. Singer: Some results on domination of sequences. Math. Ann. 184 (1970), 113-132. MR 0253022
[14] M. Valdivia Ureña: Topics in Locally Convex Spaces. North-Holland, Amsterdam, New York, Oxford (1982). MR 0671092
[15] A. Wilansky: Summability through Functional Аnalysis. North-Holland, Аmsterdam, New York, Oxford (1984). MR 0738632
Partner of
EuDML logo