Previous |  Up |  Next

Article

Title: On a class of locally Butler groups (English)
Author: Bican, Ladislav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 4
Year: 1991
Pages: 597-600
.
Category: math
.
Summary: A torsionfree abelian group $B$ is called a Butler group if $Bext(B,T) = 0$ for any torsion group $T$. It has been shown in [DHR] that under $CH$ any countable pure subgroup of a Butler group of cardinality not exceeding $\aleph_\omega$ is again Butler. The purpose of this note is to show that this property has any Butler group which can be expressed as a smooth union $\cup_{\alpha < \mu}B_\alpha$ of pure subgroups $B_\alpha$ having countable typesets. (English)
Keyword: Butler group
Keyword: generalized regular subgroup
MSC: 20K20
MSC: 20K27
MSC: 20K35
idZBL: Zbl 0748.20029
idMR: MR1159805
.
Date available: 2009-01-08T17:47:19Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118438
.
Reference: [A] Arnold D.: Notes on Butler groups and balanced extensions.Boll. Un. Mat. Ital. A(6) 5 (1986), 175-184. Zbl 0601.20050, MR 0850285
Reference: [B1] Bican L.: Splitting in abelian groups.Czech. Math. J. 28 (1978), 356-364. Zbl 0421.20022, MR 0480778
Reference: [B2] Bican L.: Purely finitely generated groups.Comment. Math. Univ. Carolinae 21 (1980), 209-218. MR 0580678
Reference: [BS] Bican L., Salce L., HASH(0x91ad320): Infinite rank Butler groups.Proc. Abelian Group Theory Conference, Honolulu, Lecture Notes in Math., vol. 1006, Springer-Verlag, 1983, 171-189.
Reference: [BSS] Bican L., Salce L., Štěpán J.: A characterization of countable Butler groups.Rend. Sem. Mat. Univ. Padova 74 (1985), 51-58. MR 0818715
Reference: [B] Butler M.C.R.: A class of torsion-free abelian groups of finite rank.Proc. London Math. Soc. 15 (1965), 680-698. Zbl 0131.02501, MR 0218446
Reference: [D] Dugas M.: On some subgroups of infinite rank Butler groups.Rend. Sem. Mat. Univ. Padova 79 (1988), 153-161. Zbl 0667.20043, MR 0964027
Reference: [DHR] Dugas M., Hill P., Rangaswamy K.M.: Infinite rank Butler groups II.Trans. Amer. Math. Soc. 320 (1990), 643-664. MR 0963246
Reference: [DR] Dugas M., Rangaswamy K.M.: Infinite rank Butler groups,.Trans. Amer. Math. Soc. 305 (1988), 129-142. Zbl 0641.20036, MR 0920150
Reference: [F1] Fuchs L.: Infinite Abelian groups.vol. I and II, Academic Press, New York, 1973 and 1977. Zbl 0338.20063, MR 0255673
Reference: [F2] Fuchs L.: Infinite rank Butler groups.preprint.
Reference: [FM] Fuchs L., Metelli C.: Countable Butler groups.Contemporary Math., to appear. Zbl 0769.20025, MR 1176115
Reference: [FV] Fuchs L., Viljoen G.: Note on the extensions of Butler groups.Bull. Austral. Math. Soc. 41 (1990), 117-122. MR 1043972
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-4_1.pdf 170.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo