Previous |  Up |  Next

Article

Title: On generalized homogeneity of locally connected plane continua (English)
Author: Charatonik, Janusz J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 4
Year: 1991
Pages: 769-774
.
Category: math
.
Summary: The well-known result of S. Mazurkiewicz that the simple closed curve is the only nondegenerate locally connected plane homogeneous continuum is extended to generalized homogeneity with respect to some other classes of mappings. Several open problems in the area are posed. (English)
Keyword: confluent
Keyword: continuum
Keyword: dendrite
Keyword: homogeneous
Keyword: light
Keyword: local homeomorphism
Keyword: locally connected
Keyword: monotone
Keyword: open
Keyword: plane
Keyword: simple closed curve
Keyword: universal plane curve
MSC: 54C10
MSC: 54F15
MSC: 54F50
idZBL: Zbl 0786.54035
idMR: MR1159824
.
Date available: 2009-01-08T17:49:14Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118457
.
Reference: [1] Anderson R.D.: A characterization of the universal curve and a proof of its homogeneity.Ann. of Math. (2) 67 (1958), 313-324. Zbl 0083.17607, MR 0096180
Reference: [2] Anderson R.D.: One-dimensional continuous curves and a homogeneity theorem.Ann. of Math. (2) 68 (1958), 1-16. Zbl 0083.17608, MR 0096181
Reference: [3] Bing R.H.: A simple closed curve is the only homogeneous bounded plane continuum that contains an arc.Canad. J. Math. 12 (1960), 209-230. Zbl 0091.36204, MR 0111001
Reference: [4] Charatonik J.J.: On fans.Dissertationes Math. (Rozprawy Mat.) 54 (1967), 1-40. Zbl 0163.44604, MR 0227944
Reference: [5] Charatonik J.J.: Some problems on generalized homogeneity of continua.Topology, Proc. International Topological Conference, Leningrad 1982; Lecture Notes in Math., vol. 1060, Springer Verlag, 1984, 1-6. Zbl 0544.54029, MR 0770218
Reference: [6] Charatonik J.J.: Mappings of the Sierpiński curve onto itself.Proc. Amer. Math. Soc. 92 (1984), 125-132. Zbl 0524.54010, MR 0749904
Reference: [7] Charatonik J.J.: Generalized homogeneity of curves and a question of H. Kato.Bull. Polish Acad. Sci. Math. 36 (1988), 409-411. Zbl 0767.54030, MR 1101430
Reference: [8] Charatonik J.J.: Monotone mappings of universal dendrites.Topology Appl. 38 (1991), 163-167. Zbl 0726.54012, MR 1094549
Reference: [9] Charatonik J.J., Omiljanowski K.: On light open mappings.Proceedings International Topological Conference, Baku (USSR), l989, 211-219. Zbl 0817.54010, MR 1347226
Reference: [10] Kato H.: Generalized homogeneity of continua and a question of J.J. Charatonik.Houston J. Math. 13 (1987), 51-63. Zbl 0635.54017, MR 0884233
Reference: [11] Kato H.: On problems of H. Cook.Topology Appl. 26 (1987), 219-228. Zbl 0612.54042, MR 0904468
Reference: [12] Krasinkiewicz J.: On homeomorphisms of the Sierpiński curve.Comment. Math. Prace Mat. 12 (1969), 255-257. Zbl 0235.54039, MR 0247618
Reference: [13] Mazurkiewicz S.: Sur les continus homogènes.Fund. Math. 5 (1924), 137-146.
Reference: [14] Prajs J.R.: On open homogeneity of closed balls in the Euclidean spaces.preprint.
Reference: [15] Prajs J.R.: Openly homogeneous continua in 2-manifolds.preprint. Zbl 0830.54028
Reference: [16] Rogers J.T., Jr.: Homogeneous continua.Topology Proc. 8 (1983), 213-233. Zbl 0541.54039, MR 0738476
Reference: [17] Rogers J.T., Jr.: Classifying homogeneous continua.Proc. of the Topology Symposium at Oxford University (June 1989), preprint. Zbl 0776.54023, MR 1173271
Reference: [18] Wilson D.C.: Open mappings of the universal curve onto continuous curves.Trans. Amer. Math. Soc. 168 (1972), 497-515. Zbl 0239.54007, MR 0298630
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-4_20.pdf 177.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo