Previous |  Up |  Next

Article

Title: A note on universal minimal dynamical systems (English)
Author: Turek, Sławomir
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 4
Year: 1991
Pages: 781-783
.
Category: math
.
Summary: Let $M(G)$ denote the phase space of the universal minimal dynamical system for a group $G$. Our aim is to show that $M(G)$ is homeomorphic to the absolute of $D^{2^\omega }$, whenever $G$ is a countable Abelian group. (English)
Keyword: dynamical system
Keyword: universal minimal dynamical system
Keyword: Abelian group
Keyword: absolute
MSC: 54H20
idZBL: Zbl 0765.54035
idMR: MR1159826
.
Date available: 2009-01-08T17:49:23Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118459
.
Reference: [1] Balcar B., Błaszczyk A.: On minimal dynamical systems on Boolean algebras.Comment. Math. Univ. Carolinae 31 (1990), 7-11. MR 1056164
Reference: [2] Comfort W.W.: Topological Groups.Handbook of set-theoretic topology, North-Holland, 1984, 1143-1260. Zbl 1071.54019, MR 0776643
Reference: [3] van Douwen E.K.: The maximal totally bounded group topology on $G$ and the biggest minimal $G$-space, for Abelian groups $G$.Topology and its Appl. 34 (1990), 69-91. Zbl 0696.22003, MR 1035461
Reference: [4] Ellis R.: Lectures on Topological Dynamics.Benjamin, New York, 1969 (). Zbl 0193.51502, MR 0267561
Reference: [5] Hewitt E., Ross K.A.: Abstract Harmonic Analysis I.Springer, Berlin, 1963.
Reference: [6] van der Woude J.: Topological Dynamix.Mathematisch Centrum, Amsterdam, 1982. Zbl 0654.54026
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-4_22.pdf 158.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo