Title:
|
A note on universal minimal dynamical systems (English) |
Author:
|
Turek, Sławomir |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
32 |
Issue:
|
4 |
Year:
|
1991 |
Pages:
|
781-783 |
. |
Category:
|
math |
. |
Summary:
|
Let $M(G)$ denote the phase space of the universal minimal dynamical system for a group $G$. Our aim is to show that $M(G)$ is homeomorphic to the absolute of $D^{2^\omega }$, whenever $G$ is a countable Abelian group. (English) |
Keyword:
|
dynamical system |
Keyword:
|
universal minimal dynamical system |
Keyword:
|
Abelian group |
Keyword:
|
absolute |
MSC:
|
54H20 |
idZBL:
|
Zbl 0765.54035 |
idMR:
|
MR1159826 |
. |
Date available:
|
2009-01-08T17:49:23Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118459 |
. |
Reference:
|
[1] Balcar B., Błaszczyk A.: On minimal dynamical systems on Boolean algebras.Comment. Math. Univ. Carolinae 31 (1990), 7-11. MR 1056164 |
Reference:
|
[2] Comfort W.W.: Topological Groups.Handbook of set-theoretic topology, North-Holland, 1984, 1143-1260. Zbl 1071.54019, MR 0776643 |
Reference:
|
[3] van Douwen E.K.: The maximal totally bounded group topology on $G$ and the biggest minimal $G$-space, for Abelian groups $G$.Topology and its Appl. 34 (1990), 69-91. Zbl 0696.22003, MR 1035461 |
Reference:
|
[4] Ellis R.: Lectures on Topological Dynamics.Benjamin, New York, 1969 (). Zbl 0193.51502, MR 0267561 |
Reference:
|
[5] Hewitt E., Ross K.A.: Abstract Harmonic Analysis I.Springer, Berlin, 1963. |
Reference:
|
[6] van der Woude J.: Topological Dynamix.Mathematisch Centrum, Amsterdam, 1982. Zbl 0654.54026 |
. |