Previous |  Up |  Next

Article

Title: Orthomodular lattices with fully nontrivial commutators (English)
Author: Matoušek, Milan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 1
Year: 1992
Pages: 25-32
.
Category: math
.
Summary: An orthomodular lattice $L$ is said to have fully nontrivial commutator if the commutator of any pair $x,y \in L$ is different from zero. In this note we consider the class of all orthomodular lattices with fully nontrivial commutators. We show that this class forms a quasivariety, we describe it in terms of quasiidentities and situate important types of orthomodular lattices (free lattices, Hilbertian lattices, etc.) within this class. We also show that the quasivariety in question is not a variety answering thus the question implicitly posed in [4]. (English)
Keyword: orthomodular lattice
Keyword: commutator
Keyword: quasivariety
MSC: 06C15
MSC: 08C15
idZBL: Zbl 0758.06007
idMR: MR1173742
.
Date available: 2009-01-08T17:53:05Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118466
.
Reference: [1] Beran L.: Orthomodular Lattices, Algebraic Approach.D. Reidel, Dordrecht, 1985. Zbl 0558.06008, MR 0784029
Reference: [2] Bruns G., Greechie R.: Some finiteness conditions for orthomodular lattices.Canadian J. Math. 3 (1982), 535-549. Zbl 0494.06008, MR 0663303
Reference: [3] Chevalier G.: Commutators and Decomposition of Orthomodular Lattices.Order 6 (1989), 181-194. MR 1031654
Reference: [4] Godowski R., Pták P.: Classes of orthomodular lattices defined by the state conditions.preprint.
Reference: [5] Gudder S.: Stochastic Methods in Quantum Mechanics.Elsevier North Holland, Inc., 1979. Zbl 0439.46047, MR 0543489
Reference: [6] Grätzer G.: Universal Algebra.2nd edition, Springer-Verlag, New York, 1979. MR 0538623
Reference: [7] Kalmbach G.: Orthomodular Lattices.Academic Press, London, 1983. Zbl 0554.06009, MR 0716496
Reference: [8] Mayet R.: Varieties of orthomodular lattices related to states.Algebra Universalis, Vol. 20, No 3 (1987), 368-396. MR 0811695
Reference: [9] Pták P., Pulmannová S.: Orthomodular structures as quantum logics.Kluwer Academic Publishers, Dordrecht/Boston/London, 1991. MR 1176314
Reference: [10] Pulmannová S.: Commutators in orthomodular lattices.Demonstratio Math. 18 (1985), 187-208. MR 0816029
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-1_3.pdf 203.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo