Previous |  Up |  Next

Article

Keywords:
regularity; minimizers; non-polynomial growth
Summary:
Minimizers of a functional with exponential growth are shown to be smooth. The techniques developed for power growth are not applicable to the exponential case.
References:
[1] Duc D.M., Eells J.: Regularity of exponentially harmonic functions. Intern. J. Math. 2 (1991), 395-408. MR 1113568 | Zbl 0751.58007
[2] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983. MR 0737190 | Zbl 1042.35002
[3] Ladyzhenskaya O.A., Ural'tseva N.N.: Linear and Quasilinear Elliptic Equations. Izdat. Nauka, Moscow, 1964 (Russian). English translation: Academic Press, New York, 1968. 2nd Russian ed., 1973. MR 0244627 | Zbl 0177.37404
[4] Lieberman G.M.: The conormal derivative problem for non-uniformly parabolic equations. Indiana Univ. Math. J. 37 (1988), 23-72. Addenda: ibid. 39 (1990), 279-281. Zbl 0707.35077
[5] Lieberman G.M.: Gradient estimates for a class of elliptic systems. Ann. Mat. Pura Appl., to appear. MR 1243951 | Zbl 0819.35019
[6] Serrin J.: Gradient estimates for solutions of nonlinear elliptic and parabolic equations. in: Contributions to Nonlinear Functional Analysis, Academic Press, New York, 1971, 565-601. MR 0402274 | Zbl 0271.35004
[7] Simon L.M.: Interior gradient bounds for non-uniformly elliptic equations. Indiana Univ. Math. J. 25 (1976), 821-855. MR 0412605
Partner of
EuDML logo