Previous |  Up |  Next

Article

Title: Note on bi-Lipschitz embeddings into normed spaces (English)
Author: Matoušek, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 1
Year: 1992
Pages: 51-55
.
Category: math
.
Summary: Let $(X,d)$, $(Y,\rho)$ be metric spaces and $f:X\to Y$ an injective mapping. We put $\|f\|_{\operatorname{Lip}} = \sup \{\rho (f(x),f(y))/d(x,y); x,y\in X, x\neq y\}$, and $\operatorname{dist}(f)= \|f\|_{\operatorname{Lip}}.\| f^{-1}\|_{\operatorname{Lip}}$ (the {\sl distortion} of the mapping $f$). We investigate the minimum dimension $N$ such that every $n$-point metric space can be embedded into the space $\ell_{\infty }^N$ with a prescribed distortion $D$. We obtain that this is possible for $N\geq C(\log n)^2 n^{3/D}$, where $C$ is a suitable absolute constant. This improves a result of Johnson, Lindenstrauss and Schechtman [JLS87] (with a simpler proof). Related results for embeddability into $\ell_p^N$ are obtained by a similar method. (English)
Keyword: finite metric space
Keyword: embedding of metric spaces
Keyword: distortion
Keyword: Lipschitz mapping
Keyword: spaces $\ell_p$
MSC: 46B07
MSC: 46B20
MSC: 46B25
MSC: 46B99
MSC: 54C25
MSC: 54E35
idZBL: Zbl 0758.46019
idMR: MR1173746
.
Date available: 2009-01-08T17:53:28Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118470
.
Reference: [Bou85] Bourgain J.: On Lipschitz embedding of finite metric spaces in Hilbert space.Israel J. Math. 52 (1985), 46-52. Zbl 0657.46013, MR 0815600
Reference: [BMW86] Bourgain J., Milman V., Wolfson H.: On type of metric spaces.Trans. Amer. Math. Soc. 294 (1986), 295-317. Zbl 0617.46024, MR 0819949
Reference: [JL84] Johnson W., Lindenstrauss J.: Extensions of Lipschitz maps into a Hilbert space.Contemporary Math. 26 (Conference in modern analysis and probability) 189-206, Amer. Math. Soc., 1984. MR 0737400
Reference: [JLS87] Johnson W., Lindenstrauss J., Schechtman G.: On Lipschitz embedding of finite metric spaces in low dimensional normed spaces.in: {\sl Geometrical aspects of functional analysis} (J. Lindenstrauss, V.D. Milman eds.), Lecture Notes in Mathematics 1267, Springer-Verlag, 1987. Zbl 0631.46016, MR 0907694
Reference: [Ma89] Matoušek J.: Lipschitz distance of metric spaces (in Czech).CSc. degree thesis, Charles University, 1990.
Reference: [Scho38] Schoenberg I.J.: Metric spaces and positive definite functions.Trans. Amer. Math. Soc. 44 (1938), 522-536. Zbl 0019.41502, MR 1501980
Reference: [Spe87] Spencer J.: Ten Lectures on the Probabilistic Method.CBMS-NSF, SIAM 1987. Zbl 0822.05060, MR 0929258
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-1_7.pdf 184.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo