Previous |  Up |  Next

Article

Title: Uniqueness of a martingale-coboundary decomposition of stationary processes (English)
Author: Samek, Pavel
Author: Volný, Dalibor
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 1
Year: 1992
Pages: 113-119
.
Category: math
.
Summary: In the limit theory for strictly stationary processes $f\circ T^i, i\in\Bbb Z$, the decomposition $f=m+g-g\circ T$ proved to be very useful; here $T$ is a bimeasurable and measure preserving transformation an $(m\circ T^i)$ is a martingale difference sequence. We shall study the uniqueness of the decomposition when the filtration of $(m\circ T^i)$ is fixed. The case when the filtration varies is solved in [13]. The necessary and sufficient condition of the existence of the decomposition were given in [12] (for earlier and weaker versions of the results see [7]). (English)
Keyword: strictly stationary process
Keyword: approximating martingale
Keyword: coboundary
MSC: 28D05
MSC: 60G10
idZBL: Zbl 0753.60032
idMR: MR1173752
.
Date available: 2009-01-08T17:53:57Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118476
.
Reference: [1] Bauer H.: Probability Theory and Elements of Measure Theory.Holt, Reinehart and Winston New York (1972). Zbl 0243.60004, MR 0636091
Reference: [2] Billingsley P.: Ergodic Theory and Information.J. Wiley New York (1965). Zbl 0141.16702, MR 0192027
Reference: [3] Cornfeld I.P., Fomin S.V., Sinai Ya.G.: Ergodic Theory.Springer-Verlag New York- Heidelberg-Berlin (1982). Zbl 0493.28007, MR 0832433
Reference: [4] Eagleson G.K.: Martingale convergence to mixtures of infinitely divisible laws.Ann. Probab. 3 (1975), 557-562. Zbl 0319.60015, MR 0378037
Reference: [5] Gilat D.: Some conditions under which two random variables are equal almost surely and simple proof of a theorem of Chung and Fuchs.Ann. Math. Statist. 42 (1971), 1647-1655. MR 0346898
Reference: [6] Gordin M.I.: The central limit theorem for stationary processes.Soviet Math. Dokl. 10 (1969), 1174-1176. Zbl 0212.50005, MR 0251785
Reference: [7] Hall P., Heyde C.C.: Martingal Limit Theory and its Application.Academic Press New York (1980). MR 0624435
Reference: [8] Jacobs K.: Lecture Notes on Ergodic Theory.Part I Matematisk Institut Aarhus Universitet Aarhus (1962-63). Zbl 0196.31301
Reference: [9] Philipp W., Stout W.: Almost Sure Invariance Principle for Partial Sums of Weakly Dependent Random Variables.Memoirs AMS 161 Providence, Rhode Island (1975).
Reference: [10] Shiryaev A.N.: Probability (in Russian).Nauka, Moscow, 1989. MR 1024077
Reference: [11] Volný, D.: Martingale decompositions of stationary processes.Yokoyama Math. J. 35 (1987), 113-121. MR 0928378
Reference: [12] Volný, D.: Approximating martingales and the central limit theorem for strictly stationary processes.to appear in Stoch. Processes and their Appl. MR 1198662
Reference: [13] Volný, D.: Martingale approximation of stationary processes: the choice of filtration.submitted for publication.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-1_13.pdf 184.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo