Previous |  Up |  Next

Article

Title: Hereditarity of closure operators and injectivity (English)
Author: Castellini, Gabriele
Author: Giuli, Eraldo
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 1
Year: 1992
Pages: 149-157
.
Category: math
.
Summary: A notion of hereditarity of a closure operator with respect to a class of monomorphisms is introduced. Let $C$ be a regular closure operator induced by a subcategory $\Cal A$. It is shown that, if every object of $\Cal A$ is a subobject of an $\Cal A$-object which is injective with respect to a given class of monomorphisms, then the closure operator $C$ is hereditary with respect to that class of monomorphisms. (English)
Keyword: closure operator
Keyword: hereditary closure operator
Keyword: injective object
Keyword: factorization pair
MSC: 18A20
MSC: 18A32
MSC: 18G05
idZBL: Zbl 0758.18002
idMR: MR1173756
.
Date available: 2009-01-08T17:54:17Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118480
.
Reference: [C] Castellini G.: Closure operators, monomorphisms and epimorphisms in categories of groups.Cahiers Topologie Geom. Differentielle Categoriques 27 (2) (1986), 151-167. Zbl 0592.18001, MR 0850530
Reference: [CS] Castellini G., Strecker G.E.: Global closure operators vs. subcategories.Quaestiones Mathematicae 13 (1990), 417-424. Zbl 0733.18001, MR 1084751
Reference: [DG$_1$] Dikranjan D., Giuli E.: Closure operators induced by topological epireflections.Coll. Math. Soc. J. Bolyai 41 (1983), 233-246. MR 0863906
Reference: [DG$_2$] Dikranjan D., Giuli E.: Closure operators I.Topology Appl 27 (1987), 129-143. Zbl 0634.54008, MR 0911687
Reference: [DG$_3$] Dikranjan D., Giuli E.: Factorizations, injectivity and compactness in categories of modules.Comm. Algebra 19 (1) (1991), 45-83. Zbl 0726.16005, MR 1092551
Reference: [DG$_4$] Dikranjan D., Giuli E.: $C$-perfect morphisms and $C$-compactness.preprint.
Reference: [DGT] Dikranjan D., Giuli E., Tholen W.: Closure operators II.Proceedings of the Conference in Categorical Topology (Prague, 1988) World Scientific (1989), 297-335. MR 1047909
Reference: [G] Giuli E.: Bases of topological epireflections.Topology Appl. 11 (1980), 265-273. MR 0585271
Reference: [HS] Herrlich H., Strecker G.E.: Category Theory.2nd ed., Helderman Verlag, Berlin, 1979. Zbl 1125.18300, MR 0571016
Reference: [HSS] Herrlich H., Salicrup G., Strecker G.E.: Factorizations, denseness, separation, and relatively compact objects.Topology Appl. 27 (1987), 157-169. Zbl 0629.18003, MR 0911689
Reference: [K] Koslowski J.: Closure operators with prescribed properties.Category Theory and its Applications (Louvain-la-Neuve, 1987) Springer L.N.M. 1248 (1988), 208-220. Zbl 0659.18005, MR 0975971
Reference: [L] Lambek J.: Torsion theories, additive semantics and rings of quotients.Springer L.N.M. 177, 1971. Zbl 0213.31601, MR 0284459
Reference: [S] Salbany S.: Reflective subcategories and closure operators.Proceedings of the Conference in Categorical Topology (Mannheim, 1975), Springer L.N.M. 540 (1976), 548-565. Zbl 0335.54003, MR 0451186
Reference: [Sk] Skula L.: On a reflective subcategory of the category of all topological spaces.Trans. Amer. Mat. Soc. 142 (1969), 37-41. Zbl 0185.50401, MR 0248718
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-1_17.pdf 212.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo