Previous |  Up |  Next

Article

Title: Natural sinks on $Y_\beta$ (English)
Author: Schröder, J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 1
Year: 1992
Pages: 173-179
.
Category: math
.
Summary: Let ${(e_\beta : {\bold Q} \rightarrow Y_\beta)}_{\beta \in \text{\bf Ord}}$ be the large source of epimorphisms in the category $\text{\bf Ury}$ of Urysohn spaces constructed in [2]. A sink ${(g_\beta : Y_\beta \rightarrow X)}_{\beta \in \text{\bf Ord}}$ is called natural, if $g_\beta \circ e_\beta = g_{\beta'} \circ e_{\beta'}$ for all $\beta,\beta' \in \text{\bf Ord}$. In this paper natural sinks are characterized. As a result it is shown that $\text{\bf Ury}$ permits no $({Epi},{\Cal M})$-factorization structure for arbitrary (large) sources. (English)
Keyword: epimorphism
Keyword: Urysohn space
Keyword: cointersection
Keyword: factorization
Keyword: natural sink
Keyword: periodic
Keyword: cowellpowered
Keyword: ordinal
MSC: 18A20
MSC: 18A30
MSC: 18B30
MSC: 54B30
MSC: 54C10
MSC: 54D10
MSC: 54D35
MSC: 54G20
idZBL: Zbl 0761.18004
idMR: MR1173759
.
Date available: 2009-01-08T17:54:37Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118483
.
Reference: [1] Adámek J., Herrlich H., Strecker G.E.: Abstract and Concrete Categories.Wiley & Sons 1990. MR 1051419
Reference: [2] Schröder J.: The category of Urysohn spaces is not cowellpowered.Top. Appl. 16 (1983), 237-241. MR 0722116
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-1_20.pdf 333.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo