Title:
|
Natural sinks on $Y_\beta$ (English) |
Author:
|
Schröder, J. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
33 |
Issue:
|
1 |
Year:
|
1992 |
Pages:
|
173-179 |
. |
Category:
|
math |
. |
Summary:
|
Let ${(e_\beta : {\bold Q} \rightarrow Y_\beta)}_{\beta \in \text{\bf Ord}}$ be the large source of epimorphisms in the category $\text{\bf Ury}$ of Urysohn spaces constructed in [2]. A sink ${(g_\beta : Y_\beta \rightarrow X)}_{\beta \in \text{\bf Ord}}$ is called natural, if $g_\beta \circ e_\beta = g_{\beta'} \circ e_{\beta'}$ for all $\beta,\beta' \in \text{\bf Ord}$. In this paper natural sinks are characterized. As a result it is shown that $\text{\bf Ury}$ permits no $({Epi},{\Cal M})$-factorization structure for arbitrary (large) sources. (English) |
Keyword:
|
epimorphism |
Keyword:
|
Urysohn space |
Keyword:
|
cointersection |
Keyword:
|
factorization |
Keyword:
|
natural sink |
Keyword:
|
periodic |
Keyword:
|
cowellpowered |
Keyword:
|
ordinal |
MSC:
|
18A20 |
MSC:
|
18A30 |
MSC:
|
18B30 |
MSC:
|
54B30 |
MSC:
|
54C10 |
MSC:
|
54D10 |
MSC:
|
54D35 |
MSC:
|
54G20 |
idZBL:
|
Zbl 0761.18004 |
idMR:
|
MR1173759 |
. |
Date available:
|
2009-01-08T17:54:37Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118483 |
. |
Reference:
|
[1] Adámek J., Herrlich H., Strecker G.E.: Abstract and Concrete Categories.Wiley & Sons 1990. MR 1051419 |
Reference:
|
[2] Schröder J.: The category of Urysohn spaces is not cowellpowered.Top. Appl. 16 (1983), 237-241. MR 0722116 |
. |