Previous |  Up |  Next

Article

Title: Properties of the solution of evolution inclusions driven by time dependent subdifferentials (English)
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 2
Year: 1992
Pages: 197-204
.
Category: math
.
Summary: In this paper we consider evolution inclusions driven by a time-dependent sub\-differential. First we prove a relaxation result and then we use it to show that if the solution set is closed in a space of continuous functions, then the orientor field is almost everywhere convex valued. (English)
Keyword: subdifferential
Keyword: monotonicity
Keyword: relaxation
Keyword: continuous selection
Keyword: lower semicontinuous multifunction
MSC: 34A60
MSC: 34G20
MSC: 49J24
MSC: 49J52
idZBL: Zbl 0757.34055
idMR: MR1189652
.
Date available: 2009-01-08T17:55:03Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118489
.
Reference: [1] Artstein Z., Prikry K.: Carathédory selections and the Scorza-Dragoni property.J. Math. Anal. Appl. 127 (1987), 540-547. MR 0915076
Reference: [2] Aubin J.-P., Cellina A.: Differential Inclusions.Springer, Berlin, 1984. Zbl 0538.34007, MR 0755330
Reference: [3] Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff International Publishing, Leyden, The Netherlands, 1976. Zbl 0328.47035, MR 0390843
Reference: [4] Brezis H.: Operateurs Maximaux Monotones.North Holland, Amsterdam, 1973. Zbl 0252.47055
Reference: [5] Cellina A., Ornelas A.: Convexity and the closure of the solution set to differential inclusions.SISSA, Report No. 136M, Trieste, Italy, 1988. Zbl 0719.34031
Reference: [6] Diestel J., Uhl J.J.: Vector Measures.Math. Surveys, Vol. 15, AMS, Providence, R.I., 1977. Zbl 0521.46035, MR 0453964
Reference: [7] Klein E., Thompson A.: Theory of Correspondences.Wiley, New York, 1984. Zbl 0556.28012, MR 0752692
Reference: [8] Papageorgiou N.S.: Measurable multifunctions and their applications to convex integral functionals.Intern. J. Math. and Math. Sci. 12 (1989), 175-192. Zbl 0659.28008, MR 0973087
Reference: [9] Papageorgiou N.S.: On measurable multifunctions with applications to random multivalued equations.Math. Japonica 32 (1987), 437-464. Zbl 0634.28005, MR 0914749
Reference: [10] Papageorgiou N.S.: On evolution inclusions associated with time dependent convex subdifferentials.Comment. Math. Univ. Carolinae 31 (1990), 517-527. Zbl 0711.34076, MR 1078486
Reference: [11] Tsukada M.: Convergence of best approximations in smooth Banach spaces.J. Approx. Theory 40 (1984), 301-309. MR 0740641
Reference: [12] Wagner D.: Survey of measurable selection theorems.SIAM J. Control and Optim. 15 (1977), 859-903. Zbl 0407.28006, MR 0486391
Reference: [13] Watanabe J.: On certain nonlinear evolution equations.J. Math. Soc. Japan 25 (1973), 446-463. Zbl 0253.35053, MR 0326522
Reference: [14] Yotsutani S.: Evolution equations associated with subdifferentials.J. Math. Soc. Japan 31 (1978), 623-646. MR 0544681
Reference: [15] Jarnik J., Kurzweil J.: On conditions on right hand sides of differential relations.Časopis pro pěstování matematiky 102 (1977), 334-349. Zbl 0369.34002, MR 0466702
Reference: [16] Rzezuchowski T.: Scorza-Dragoni type theorem for upper semicontinuous multivalued functions.Bulletin Polish Academy of Sciences 28 (1980), 61-66. Zbl 0459.28007, MR 0616201
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-2_2.pdf 216.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo