Title:
|
Strong Fubini axioms from measure extension axioms (English) |
Author:
|
Zakrzewski, Piotr |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
33 |
Issue:
|
2 |
Year:
|
1992 |
Pages:
|
291-297 |
. |
Category:
|
math |
. |
Summary:
|
It is shown that measure extension axioms imply various forms of the Fubini theorem for nonmeasurable sets and functions in Radon measure spaces. (English) |
Keyword:
|
Fubini theorem |
Keyword:
|
Product Measure Extension Axiom |
Keyword:
|
Radon measure |
MSC:
|
03E05 |
MSC:
|
03E35 |
MSC:
|
03E65 |
MSC:
|
28A35 |
MSC:
|
28C05 |
MSC:
|
28C15 |
idZBL:
|
Zbl 0765.03026 |
idMR:
|
MR1189659 |
. |
Date available:
|
2009-01-08T17:55:43Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118496 |
. |
Reference:
|
[1] Carlson T.: Extending Lebesgue measure by infinitely many sets.Pac. J. Math. 115 (1984), 33-45. Zbl 0582.28004, MR 0762199 |
Reference:
|
[2] Fleissner W.G.: The normal Moore space conjecture.in: Handbook of set-theoretic topology, ed. by K. Kunen and J.E. Vaughan, North-Holland, 1984. Zbl 0562.54039, MR 0776635 |
Reference:
|
[3] Freiling C.: Axioms of symmetry: throwing darts at the real number line.J. Symbolic Logic 51 (1986), 190-200. Zbl 0619.03035, MR 0830085 |
Reference:
|
[4] Fremlin D.H.: Measure algebras.in: Handbook of Boolean algebras, ed. by J.D. Monk, Elsevier Science Publishers B.V., 1989. Zbl 1165.28002, MR 0991611 |
Reference:
|
[5] Fremlin D.H.: Consequences of Martin's Axiom.Cambridge University Press, 1984. Zbl 1156.03050 |
Reference:
|
[6] Fremlin D.H.: Real-valued-measurable cardinals.to appear. Zbl 0839.03038, MR 1234282 |
Reference:
|
[7] Friedman H.: A consistent Fubini-Tonelli theorem for nonmeasurable functions.Illinois J. Math. 24 (1980), 390-395. Zbl 0467.28003, MR 0573474 |
Reference:
|
[8] Kamburelis A.: A new proof of the Gitik-Shelah theorem.Israel J. Math. 72 (1990), 373-380. Zbl 0738.03019, MR 1120228 |
Reference:
|
[9] Shipman J.: Cardinal conditions for strong Fubini theorems.Trans. Amer. Math. Soc. 321 (1990), 465-481. Zbl 0715.03022, MR 1025758 |
Reference:
|
[10] Zakrzewski P.: Strong Fubini theorems from measure extension axioms.an abstract of the talk given at the 15th Summer Symposium in Real Analysis, Real Analysis Exchange 17 (1991-92), 65-66. |
. |