Article
Keywords:
distribution; neutrix limit; neutrix product
Summary:
The fixed infinitely differentiable function $\rho (x)$ is such that $\{n\rho (n x)\}$ is a re\-gular sequence converging to the Dirac delta function $\delta $. The function $\delta _{\bold n}(\bold x)$, with $\bold x=(x_1, \dots , x_m)$ is defined by $$ \delta _{\bold n}(\bold x)=n_1 \rho (n_1 x_1)\dots n_m \rho (n_m x_m). $$ The product $f \circ g$ of two distributions $f$ and $g$ in $\mathcal D'_m$ is the distribution $h$ defined by $$ \operatornamewithlimits{N\mbox{--}\lim}\limits _{n_1\rightarrow \infty } \dots \operatornamewithlimits{N\mbox{--}\lim}\limits _{n_m\rightarrow \infty } \langle f_{\bold n} g_{\bold n}, \phi \rangle = \langle h, \phi \rangle, $$ provided this neutrix limit exists for all $\phi (\bold x)=\phi _1(x_1)\dots \phi _m(x_m)$, where $f_{\bold n}=f \ast \delta _{\bold n}$ and $g_{\bold n}=g\ast \delta _{\bold n}$.
References:
                        
[1] Cheng L.Z., Fisher B.: 
Several products of distributions on $R^m$. Proc. R. Soc. Lond. A 426 (1989), 425-439. 
MR 1030468 
[2] van der Corput J.G.: 
Introduction to the neutrix calculus. J. Analyse Math. 7 (1959-60), 291-398. 
MR 0124678 | 
Zbl 0097.10503 
[4] Fisher B.: 
The product of the distributions $x_+^{-r-1/2}$ and $x_-^{-r-1/2}$. Proc. Camb. Phil. Soc. 71 (1972), 123-130. 
MR 0296690 | 
Zbl 0239.46031 
[5] Fisher B.: 
The neutrix distribution product $x_+^{-r}\delta ^{(r-1)}(x)$. Studia Sci. Math. Hungar. 9 (1974), 439-441. 
MR 0412805 
[6] Fisher B., Li C.K.: 
On the product of distributions in $m$ variables. Jiangsu Coll. Jnl. 11 (1990), 1-10. 
MR 1069541