Article
Keywords:
universal completion; metric space; uniform space
Summary:
A criterion for the existence of an initial completion of a concrete category $\bold K$ universal w.r.t\. finite products and subobjects is presented. For $\bold K=$ metric spaces and uniformly continuous maps this completion is the category of uniform spaces.
References:
                        
[A] Adámek J.: 
Theory of Mathematical Structures. Reidel Publ. Comp., Dordrecht, 1983. 
MR 0735079[AHS] Adámek J., Herrlich H., Strecker G.E.: 
Least and largest initial completion. Comment. Math. Univ. Carolinae 20 (1979), 43-75. 
MR 0526147[C] Čech E.: 
Topological Spaces. Academia Prague, 1966. 
MR 0211373[E] Ehersmann A.E.: 
Partial completions of concrete functors. Cahiers Topo. Géom. Diff. 22 (1981), 315-328. 
MR 0649079[PRRS] Pelant J., Reiterman J., Rödl V., Simon P.: 
Ultrafilters on $ømega $ and atoms in the lattice of uniformities I. Topology and Appl. 30 (1988), 1-17. 
MR 0964058