Previous |  Up |  Next

Article

Title: Deformation of Banach spaces (English)
Author: Banaś, Józef
Author: Fraczek, Krzysztof
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 1
Year: 1993
Pages: 47-53
.
Category: math
.
Summary: Using some moduli of convexity and smoothness we introduce a function which allows us to measure the deformation of Banach spaces. A few properties of this function are derived and its applicability in the geometric theory of Banach spaces is indicated. (English)
Keyword: uniformly convex Banach space
Keyword: uniformly smooth Banach space
Keyword: modulus of convexity
Keyword: modulus of smoothness
MSC: 46B20
idZBL: Zbl 0817.46016
idMR: MR1240202
.
Date available: 2009-01-08T18:00:58Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118554
.
Reference: [1] Alonso J., Ullan A.: Moduli of convexity.Functional Analysis and Approximation, edited by P.L. Papini, Bagni di Lucca, Italy, May 16-20, 1988, 25-33. MR 1001569
Reference: [2] Banaś J.: On moduli of smoothness of Banach spaces.Bull. Pol. Acad. Sci. Math. 34 (1986), 287-293. MR 0874871
Reference: [3] Banaś J., Hajnosz A., Wȩdrychowicz S.: On convexity and smoothness of Banach space.Comment. Math. Univ. Carolinae 31 (1990), 445-452. MR 1078479
Reference: [4] Clarkson J.A.: Uniformly convex spaces.Trans. Amer. Math. Soc. 40 (1936), 396-414. Zbl 0015.35604, MR 1501880
Reference: [5] Daneš J.: On local and global moduli of convexity.Comment. Math. Univ. Carolinae 17 (1976), 413-420. MR 0417755
Reference: [6] Day M.M.: Uniform convexity in factor and conjugate spaces.Ann. of Math. 45 (1944), 375-385. Zbl 0063.01058, MR 0010779
Reference: [7] Goebel K., Kirk W.A.: Topics in Metric Fixed Point Theory.Cambridge University Press, 1991. MR 1074005
Reference: [8] Gurarii V.I.: Differential properties of the convexity moduli of Banach spaces (in Russian).Mat. Issled. 2 (1967), 141-148. MR 0211245
Reference: [9] Hanner O.: On the uniform convexity of $L^p$ and $l^p$.Arkiv Mat. 3 (1956), 239-244. MR 0077087
Reference: [10] Liokoumovich V.I.: The existence of $B$-spaces with non-convex modulus of convexity (in Russian).Izv. Vyss. Uchebn. Zaved. Matematica 12 (1973), 43-50.
Reference: [11] Milman V.D.: The geometric theory of Banach spaces.Part II, Uspehi Mat. Nauk 26 (1971), 73-149. MR 0420226
Reference: [12] Nordlander G.: The modulus of convexity in normed spaces.Arkiv Mat. 4 (1960), 15-17. MR 0140915
Reference: [13] Ullan A.: Modulos de convexidad y lisura en espacios normados.Univ. de Extremadura, Spain, 1991. MR 1174971
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-1_5.pdf 187.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo