Previous |  Up |  Next

Article

Keywords:
best approximation; strongly unique best approximation; approximation in spaces of linear operators
Summary:
\font\muj=rsfs10 \font\mmuj=rsfs8 Let $X$ be a finite dimensional Banach space and let $Y\subset X$ be a hyperplane. Let $\text{\mmuj L}\,_Y=\{L\in \text{\mmuj L}\,(X,Y):L\mid _Y=0\}$. In this note, we present sufficient and necessary conditions on $L_0\in \text{\mmuj L}\,_Y$ being a strongly unique best approximation for given $L\in \text{\mmuj L}\,(X)$. Next we apply this characterization to the case of $X=l_\infty ^n$ and to generalization of \linebreak Theorem I.1.3 from [12] (see also [13]).
References:
[1] Baronti M., Franchetti C.: Minimal and polar projections onto hyperplanes in the space $l^p$ and $l_\infty $. to appear.
[2] Baronti M., Papini P.L.: Norm one projections onto subspaces of $l^p$. Ann. Mat. Pura Appl. IV (1988), 53-61. MR 0980971
[3] Bartelt M.W., McLaughlin H.W.: Characterizations of strong unicity in approximation theory. Jour. Approx. Th. 9 (1973), 255-266. MR 0372500 | Zbl 0273.41019
[4] Bartelt M.W., Schmidt D.P.: On Poreda's problem on the strong unicity constants. Jour. Approx. Th. 33 (1981), 69-79. MR 0639222 | Zbl 0478.41024
[5] Blatter J., Cheney E.W.: Minimal projections onto hyperplanes in sequence spaces. Ann. Mat. Pura Appl. 101 (1974), 215-227. MR 0358179
[6] Cheney E.W.: Introduction to Approximation Theory. McGraw-Hill, New York, 1966. MR 0222517 | Zbl 0912.41001
[7] Franchetti C.: Projections onto hyperplanes in Banach spaces. Jour. Approx. Th. 38 (1983), 319-333. MR 0711458 | Zbl 0516.41028
[8] Chalmers B.L., Metcalf F.T., Taylor G.D.: Strong unicity of arbitrary rate. Jour. Approx. Th. 37 (1983), 238-245. MR 0693010 | Zbl 0517.41031
[9] Laurent P.J.: Approximation et Optimisation. Hermann, Paris, 1972. MR 0467080 | Zbl 0238.90058
[10] Lewicki G.: Kolgomorov's type criteria for spaces of compact operators. Jour. Approx. Th. 64 (1991), 181-202. MR 1091468
[11] Newman D.J., Shapiro H.S.: Some theorems on Chebyshev approximations. Duke Math. J. 30 (1963), 673-681. MR 0156138
[12] Odyniec Wł., Lewicki G.: Minimal Projections in Banach Spaces. Lecture Notes in Math., vol. 1449 (1990), Springer-Verlag. MR 1079547 | Zbl 1062.46500
[13] Odyniec Wł.: The uniqueness of minimal projection (in Russian). Izv. Vyss. Ucebn. Zavied. Matematika 3 (1978), 73-75. MR 0626041
[14] Smarzewski R.: Strongly unique best approximation in Banach spaces. Jour. Approx. Th. 47 (1986), 184-194. MR 0847538 | Zbl 0615.41027
[15] Sudolski J., Wȯjcik A.: Some remarks on strong uniqueness of best approximation. Approx. Theory and its Appl. 6 (2), June 1990, 44-78. MR 1078687
Partner of
EuDML logo