Previous |  Up |  Next

Article

Title: Special finite-difference approximations of flow equations in terms of stream function, vorticity and velocity components for viscous incompressible liquid in curvilinear orthogonal coordinates (English)
Author: Kalis, H.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 1
Year: 1993
Pages: 165-174
.
Category: math
.
Summary: The Navier-Stokes equations written in general orthogonal curvilinear coordinates are reformulated with the use of the stream function, vorticity and velocity components. The resulting system id discretized on general irregular meshes and special monotone finite-difference schemes are derived. (English)
Keyword: finite-difference hydrodynamics
MSC: 65M06
MSC: 76D05
MSC: 76E99
MSC: 76M20
idZBL: Zbl 0783.76060
idMR: MR1240214
.
Date available: 2009-01-08T18:02:08Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118566
.
Reference: [1] Doolan E.P., Miller J.J.H., Schilders W.H.A.: Uniform Numerical Methods for Problems with Initial and Boundary Layers.Dublin, 1980. Zbl 0527.65058, MR 0610605
Reference: [2] Allen D.N., Southwell R.V.: Relaxation methods to determine the motion in two dimensions of viscous fluid past a fixed cylinder.Quart. J. Mech. and Appl. Math. VIII (1955), 129-145. MR 0070367
Reference: [3] Buleev N.Y.: Three Dimensional Model of Turbulent Exchange (in Russian).Moscow, Nauka, 1989. MR 1007137
Reference: [4] Samarsky A.A.: Theory of Difference Schemes (in Russian).Moscow, Nauka, 1977. MR 0483271
Reference: [5] Milne L.M., Thomson C.B.E.: Theoretical Hydrodynamics.London-New York, 1960. Zbl 0164.55802, MR 0112435
Reference: [6] Kochin N.E.: Vector Calculus and the Introduction to Tensor Calculus (in Russian).Moscow, Nauka, 1965.
Reference: [7] Angot A.: Complements des mathématiques. A l'usage des ingenieurs de l'electrotechnique et des telecommunications.Paris, 1957.
Reference: [8] Kalis H.: Special difference schemes for solving boundary value problems of mathematical physics (in Russian).J. Electronical Modelling, Vol. 8, No. 3, Kiev, 1986, pp. 78-83.
Reference: [9] Kalis H.: Some special schemes for solving boundary value problems of hydrodynamics and magneto-hydrodynamics in a wide range of changing parameters.Latvia Mathematical Annual, Vol. 31, Riga, 1988, pp. 160-166. MR 0942126
Reference: [10] Gantmacher J.R.: Theory of Matrices (in Russian).Moscow, Nauka, 1967.
Reference: [11] Ilhyn A.M.: Difference scheme for differential equations with small parameter at highest derivative (in Russian).Mathematical Notes 6 (1969), 234-248.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-1_17.pdf 203.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo