| Title:
             | 
Sacks forcing collapses $\frak c$ to $\frak b$ (English) | 
| Author:
             | 
Simon, Petr | 
| Language:
             | 
English | 
| Journal:
             | 
Commentationes Mathematicae Universitatis Carolinae | 
| ISSN:
             | 
0010-2628 (print) | 
| ISSN:
             | 
1213-7243 (online) | 
| Volume:
             | 
34 | 
| Issue:
             | 
4 | 
| Year:
             | 
1993 | 
| Pages:
             | 
707-710 | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We shall prove that Sacks algebra is nowhere $(\frak b, \frak c, \frak c)$-distributive, which implies that Sacks forcing collapses $\frak c$ to $\frak b$. (English) | 
| Keyword:
             | 
perfect tree | 
| Keyword:
             | 
distributivity of Boolean algebra | 
| Keyword:
             | 
almost disjoint refinement | 
| MSC:
             | 
03C25 | 
| MSC:
             | 
03E25 | 
| MSC:
             | 
03E40 | 
| MSC:
             | 
03G05 | 
| MSC:
             | 
06A07 | 
| MSC:
             | 
06E05 | 
| idZBL:
             | 
Zbl 0797.03053 | 
| idMR:
             | 
MR1263799 | 
| . | 
| Date available:
             | 
2009-01-08T18:07:32Z | 
| Last updated:
             | 
2012-04-30 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/118627 | 
| . | 
| Reference:
             | 
[A] Abraham U.: A minimal model for $\lnot$CH: iteration of Jensen's reals.Trans. Amer. Math. Soc. (1984), 281 657-674. MR 0722767 | 
| Reference:
             | 
[BS] Balcar B., Simon P.: Disjoint Refinement.in: Handbook of Boolean Algebra, Elsevier Sci. Publ. (1989), 333-386. MR 0991597 | 
| Reference:
             | 
[JMS] Judah H., Miller A.W., Shelah S.: Sacks forcing, Laver forcing and Martin's axiom.Arch. Math. Logic (1992), 31 145-161. Zbl 0755.03026, MR 1147737 | 
| Reference:
             | 
[RS] Rosłanowski A., Shelah S.: More forcing notions imply diamond.(preprint January 4, 1993). | 
| Reference:
             | 
[S] Sacks G.E.: Forcing with perfect closed sets.Axiomatic set theory, Proc. Symp. Pure Math. 13 (1971), 331-355. Zbl 0226.02047, MR 0276079 | 
| . |