Previous |  Up |  Next

Article

Title: Weakly Picard mappings (English)
Author: Rus, Ioan A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 4
Year: 1993
Pages: 769-773
.
Category: math
.
Summary: In this paper we generalize the well known converse to the contraction principle due to C. Bessaga, dropping the uniqueness of the fixed point from its hypotheses. Some properties of weakly Picard mappings are given. (English)
Keyword: fixed points
Keyword: Bessaga mappings
Keyword: Jano\v s mappings
Keyword: Picard mappings
MSC: 47H10
MSC: 54H25
idZBL: Zbl 0787.54045
idMR: MR1263804
.
Date available: 2009-01-08T18:08:04Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118632
.
Reference: [1] Barbuti U., Guerra S.: Osservazioni sopra una nota precedente.Rend. Ist. di Matem. Univ. Trieste 3 (1971), 1-12. MR 0313892
Reference: [2] Bellen A.: Non-cyclic transformation and uniform convergence of the Picard sequences.Rend. Ist. di Matem. Univ. Trieste 4 (1972), 1-7. MR 0336725
Reference: [3] Bessaga C.: On the converse of the Banach fixed point principle.Colloq. Math. 7 (1959), 41-43. Zbl 0089.31501, MR 0111015
Reference: [4] Browder F.E., Petryshyn W.V.: The solution by iteration of nonlinear functional equations in Banach spaces.Bull. Amer. Soc. 72 (1966), 571-575. Zbl 0138.08202, MR 0190745
Reference: [5] Belluce L.P., Kirk W.A.: Some fixed point theorems in metric and Banach spaces.Canad. Math. Bull. 12 (1969), 481-491. Zbl 0195.42901, MR 0250148
Reference: [6] Coroian L.: $\alpha _{DP}$-condensing mappings.Univ. of Cluj-Napoca, Preprint No. 3, 1988, 17-22. MR 0975265
Reference: [7] Iseki K.: Fixed point theorems in generalized complete metric space.Tamkang J. Math. 5 (1974), 213-219. MR 0365542
Reference: [8] Janoš L.: A converse of the Banach's contraction theorem.Proc. Amer. Math. Soc. 18 (1967), 287-289. MR 0208589
Reference: [9] Janoš L., Ko H.-M., Tan K.-K.: Edelstein's contractivity and attractors.Proc. Amer. Math. Soc. 76 (1979), 339-344. Zbl 0411.54031, MR 0537101
Reference: [10] Leader S.: Uniformly contractive fixed points in compact metric spaces.Proc. Amer. Math. Soc. 86 (1982), 153-158. Zbl 0507.54040, MR 0663887
Reference: [11] Meyers P.R.: A converse to Banach's contraction theorem.J. Res. Nat. Bureau of Standard 71B (1971), 73-76. MR 0221469
Reference: [12] Opoijcev W.I.: The converse of the contraction mapping principle (in Russian).Usp. Mat. Nauk 31 (1976), 169-198. MR 0420591
Reference: [13] Rhoades B.E.: Contractive definitions revisited.Contemporary Math. 21 (1983), 189-205. Zbl 0528.54037, MR 0729516
Reference: [14] Rus I.A.: Principii şi aplicaţii ale teoriei punctului fix.Ed. Dacia, Cluj-Napoca, 1979.
Reference: [15] Rus I.A.: Generalized contractions.Univ. Cluj-Napoca, Preprint No. 3, 1983, 1-30. MR 0782679
Reference: [16] Rus I.A.: Bessaga mappings.Proc. Colloq. Approx. Optimization, Cluj-Napoca, 1984, 165-175. Zbl 0572.54040, MR 0847265
Reference: [17] Rus I.A.: Picard mappings: results and problems.Univ. Cluj-Napoca, Preprint No. 6, 1987, 55-64. Zbl 0654.54030, MR 0993513
Reference: [18] Rus I.A.: Picard mappings I..Studia Univ. Babeş-Bolyai 33 (1988), 70-73. Zbl 0672.47049, MR 1004822
Reference: [19] Rus I.A.: Basic problems of the metric fixed point theory revisited.Studia Univ. Babeş-Bolyai 34 (1989), 61-69. Zbl 0878.54028, MR 1073756
Reference: [20] Rus I.A., Mureşan A.S.: Examples and counterexamples for Janoš mappings.Univ. Cluj-Napoca, Preprint No. 3, 1984, 63-66. MR 0807962
Reference: [21] Tan K.-K.: Remark on contraction mappings.Boll. U.M.I. 9 (1974), 23-27. Zbl 0295.54054, MR 0358750
Reference: [22] Volčič A.: Some remarks on a S. Chu and R.D. Moyer's theorem.Rend. Accad. Naz. Lincei 49 (1970), 236-241. MR 0295325
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-4_14.pdf 173.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo