Previous |  Up |  Next

Article

Title: On $\omega$-limit sets of nonautonomous differential equations (English)
Author: Klebanov, Boris S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 2
Year: 1994
Pages: 267-281
.
Category: math
.
Summary: In this paper the $\omega$-limit behaviour of trajectories of solutions of ordinary differential equations is studied by methods of an axiomatic theory of solution spaces. We prove, under very general assumptions, semi-invariance of $\omega$-limit sets and a Poincar'{e}-Bendixon type theorem. (English)
Keyword: $\omega$-limit sets
Keyword: stationary points
Keyword: the Poincar'{e}-Bendixon theorem
MSC: 34A34
MSC: 34C05
MSC: 34C11
MSC: 34C99
MSC: 34D05
idZBL: Zbl 0809.34042
idMR: MR1286574
.
Date available: 2009-01-08T18:10:55Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118666
.
Reference: [1] Artstein Z.: Limiting equations and stability of nonautonomous ordinary differential equations.Appendix A in: J.P. LaSalle, {The stability of dynamical systems}, CBMS Regional Conference Series in Applied Mathematics, vol. 25, SIAM, Philadelphia, 1976. Zbl 0364.93002, MR 0481301
Reference: [2] Artstein Z.: Topological dynamics of ordinary differential equations and Kurzweil equations.J. Differential Equations 23 (1977), 224-243. Zbl 0353.34044, MR 0432985
Reference: [3] Artstein Z.: The limiting equations of nonautonomous ordinary differential equations.J. Differential Equations 25 (1977), 184-202. Zbl 0358.34045, MR 0442381
Reference: [4] Artstein Z.: Uniform asymptotic stability via the limiting equations.J. Differential Equations 27 (1978), 172-189. Zbl 0383.34037, MR 0466795
Reference: [5] Coddington E.A., Levinson N.: Theory of ordinary differential equations.McGraw-Hill, New York, 1955. Zbl 0064.33002, MR 0069338
Reference: [6] Davy J.L.: Properties of the solution set of a generalized differential equation.Bull. Austral. Math. Soc. 6 (1972), 379-398. Zbl 0239.49022, MR 0303023
Reference: [7] Engelking R.: General Topology.PWN, Warsaw, 1977. Zbl 0684.54001, MR 0500780
Reference: [8] Fedorchuk V.V., Filippov V.V.: General Topology. Basic Constructions (in Russian).Moscow University Press, Moscow, 1988.
Reference: [9] Filippov V.V.: On the theory of solution spaces of ordinary differential equations (in Russian).Dokl. Akad. Nauk SSSR 285 (1985), 1073-1077; English translation: Soviet Math. Dokl. 32 (1985), 850-854. MR 0820601
Reference: [10] Filippov V.V.: On the ordinary differential equations with singularities in the right-hand side (in Russian).Mat. Zametki 38 (1985), 832-851; English translation: Math. Notes 38 (1985), 964-974. MR 0823421
Reference: [11] Filippov V.V.: Cauchy problem theory for an ordinary differential equation from the point of view of general topology (in Russian).General Topology. Mappings of Topological Spaces, Moscow University Press, Moscow, 1986, 131-164. MR 1080764
Reference: [12] Filippov V.V.: On stationary points and some geometric properties of solutions of ordinary differential equations (in Russian).Ross. Acad. Nauk Dokl. 323 (1992), 1043-1047; English translation: Russian Acad. Sci. Dokl. Math. 45 (1992), 497-501. MR 1202308
Reference: [13] Filippov V.V.: On the Poincaré-Bendixon theorem and compact families of solution spaces of ordinary differential equations (in Russian).Mat. Zametki 53 (1993), 140-144. MR 1220821
Reference: [14] Hartman P.: Ordinary differential equations.Wiley, New York, 1964. Zbl 1009.34001, MR 0171038
Reference: [15] Kluczny C.: Sur certaines familles de courbes en relation avec la théorie des équations différentielles ordinaires I, II.Annales Universitatis M. Curie-Skłodowska, Sec. A, Math. 15 (1961) 13-40; 16 (1962) 5-18.
Reference: [16] Markus L.: Asymptotically autonomous differential systems.Contributions to the Theory of Nonlinear Oscillations, vol. III, Annals of Math. Stud. 36, Princeton University Press, N.J., 1956, 17-29. Zbl 0075.27002, MR 0081388
Reference: [17] Miller R.K.: Asymptotic behavior of solutions of nonlinear differential equations.Trans. Amer. Math. Soc. 115 (1965), 400-416. Zbl 0137.28202, MR 0199502
Reference: [18] Saks S.: Theory of the integral.PWN, Warsaw, 1937. Zbl 0017.30004
Reference: [19] Savel'ev P.N.: On the Poincaré-Bendixon theorem and dissipativity in the plane (in Russian).Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1991, no. 3, 69-71; English translation: Moscow Univ. Math. Bull. 46 (1991), no. 3, 54-55. MR 1204259
Reference: [20] Sell G.R.: Nonautonomous differential equations and topological dynamics I, II.Trans. Amer. Math. Soc. 127 (1967), 241-283. MR 0212313
Reference: [21] Strauss A., Yorke J.A.: On asymptotically autonomous differential equations.Math. Systems Theory 1 (1967), 175-182. Zbl 0189.38502, MR 0213666
Reference: [22] Thieme H.R.: Convergence results and a Poincaré-Bendixon trichotomy for asymptotically autonomous differential equations.J. Math. Biol. 30 (1992), 755-763. MR 1175102
Reference: [23] Yorke J.A.: Spaces of solutions.Mathematical Systems Theory and Economics, Vol. II, Lecture Notes in Operations Research and Mathematical Economics, vol. 12, Springer-Verlag, New York, 1969, 383-403. Zbl 0188.15502, MR 0361294
Reference: [24] Zaremba S.K.: Sur certaines familles de courbes en relation avec la théorie des équations différentielles.Ann. Soc. Polon. Math. 15 (1936), 83-100.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-2_8.pdf 276.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo