Previous |  Up |  Next

Article

Title: Boundary value problems and periodic solutions for semilinear evolution inclusions (English)
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 2
Year: 1994
Pages: 325-336
.
Category: math
.
Summary: We consider boundary value problems for semilinear evolution inclusions. We establish the existence of extremal solutions. Using that result, we show that the evolution inclusion has periodic extremal trajectories. These results are then applied to closed loop control systems. Finally, an example of a semilinear parabolic distributed parameter control system is worked out in detail. (English)
Keyword: evolution operator
Keyword: multifunction
Keyword: Hausdorff metric
Keyword: extremal solution
Keyword: periodic solution
Keyword: Fredholm alternative
Keyword: control system
Keyword: parabolic system
MSC: 34A60
MSC: 34B15
MSC: 34G20
MSC: 34H05
MSC: 47N20
MSC: 49J24
MSC: 93C15
idZBL: Zbl 0807.34077
idMR: MR1286579
.
Date available: 2009-01-08T18:11:20Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118671
.
Reference: [1] Anichini G.: Nonlinear problems for systems of differential equations.Nonlinear Anal.-TMA 1 (1977), 691-699. Zbl 0388.34011, MR 0592963
Reference: [2] Benamara M.: Points Extremaux, Multi-applications et Fonctionelles Intégrales.Thèse du 3ème cycle, Université de Grenoble, 1975.
Reference: [3] Diestel J., Uhl J.: Vector Measures.Math. Surveys, Vol. 15, AMS, Providence, RI, 1977. Zbl 0521.46035, MR 0453964
Reference: [4] Himmelberg C.: Measurable relations.Fund. Math. 87 (1975), 57-91. Zbl 0296.28003, MR 0367142
Reference: [5] Kartsatos A.: Locally invertible operators and existence problems in differential systems.Tohoku Math. Jour. 28 (1976), 167-176. Zbl 0356.34019, MR 0430385
Reference: [6] Klein E., Thompson A.: Theory of Correspondences.Wiley, New York, 1984. Zbl 0556.28012, MR 0752692
Reference: [7] Konishi Y.: Compacité des résolvantes des opérateurs maximaux cycliquement monotones.Proc. Japan Acad. 49 (1973), 303-305. Zbl 0272.47034, MR 0346600
Reference: [8] Papageorgiou N.S.: On the theory of Banach space valued multifunctions. Part 1: Integration and conditional expectation.J. Multiv. Anal. 17 (1985), 185-206. MR 0808276
Reference: [9] Papageorgiou N.S.: Convergence theorems for Banach space valued integrable multifunctions.Intern. J. Math. and Math. Sci. 10 (1987), 433-442. Zbl 0619.28009, MR 0896595
Reference: [10] Papageorgiou N.S.: On multivalued evolution equations and differential inclusions in Banach spaces.Comm. Math. Univ. S.P. 36 (1987), 21-39. Zbl 0641.47052, MR 0892378
Reference: [11] Papageorgiou N.S.: Boundary value problems for evolution inclusions.Comment. Math. Univ. Carolinae 29 (1988), 355-363. Zbl 0696.35074, MR 0957404
Reference: [12] Papageorgiou N.S.: On evolution inclusion associated with time dependent convex subdifferentials.Comment. Math. Univ. Carolinae 31 (1990), 517-527. MR 1078486
Reference: [13] Pavel N.: Nonlinear Evolution Operators and Semigroups.Lecture Notes in Math. 1260, Springer, Berlin, 1987. Zbl 0626.35003, MR 0900380
Reference: [14] Tanabe H.: Equations in Evolution.Pitman, London, 1979.
Reference: [15] Tolstonogov A.: Extreme continuous selectors of multivalued maps and the ``bang-bang'' principle for evolution inclusions.Soviet Math. Doklady 317 (1991), 481-485. MR 1121349
Reference: [16] Wagner D.: Survey of measurable selection theorems.SIAM J. Control. Optim. 15 (1977), 859-903. Zbl 0407.28006, MR 0486391
Reference: [17] Zecca P., Zezza P.: Nonlinear boundary value problems in Banach spaces for multivalued differential equations on a non-compact interval.Nonlinear Anal.-TMA 3 (1979), 347-352. MR 0532895
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-2_13.pdf 244.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo