Previous |  Up |  Next

Article

Title: Sequential convergence in $C_p(X)$ (English)
Author: Fremlin, D. H.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 2
Year: 1994
Pages: 371-382
.
Category: math
.
Summary: I discuss the number of iterations of the elementary sequential closure operation required to achieve the full sequential closure of a set in spaces of the form $C_p(X)$. (English)
Keyword: sequential convergence
Keyword: $C_p(X)$
MSC: 54A20
MSC: 54C30
MSC: 54C35
idZBL: Zbl 0827.54002
idMR: MR1286585
.
Date available: 2009-01-08T18:11:48Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118677
.
Reference: [1] Bourgain J.: New classes of $\Cal L_p$ spaces.Springer, 1981 (Lecture Notes in Mathematics 889). MR 0639014
Reference: [2] Day M.M.: Normed Spaces.Springer, 1962. Zbl 0316.46010
Reference: [3] van Douwen E.K.: The integers and topology.pp. 111-167 in 11. Zbl 0561.54004, MR 0776622
Reference: [4] Dugundji J.: An extension of Tietze's theorem.Pacific J. Math. 1 (1951), 353-367. Zbl 0043.38105, MR 0044116
Reference: [5] Engelking R.: General Topology.Heldermann, 1989. Zbl 0684.54001, MR 1039321
Reference: [6] Fremlin D.H.: Supplement to ``Convergent sequences in $C_p(X)$''.University of Essex Mathematics Department Research Report 92-14.
Reference: [7] Gerlits J., Nagy Z.: Some properties of $C(X)$.Topology Appl. 14 (1982), 151-161. Zbl 0503.54020, MR 0667661
Reference: [8] Jameson G.J.O.: Topology and Normed Spaces.Chapman & Hall, 1974. Zbl 0285.46002, MR 0463890
Reference: [9] Kechris A.S., Louveau A.: Descriptive Set Theory and Sets of Uniqueness.Cambridge U.P., 1987. MR 0953784
Reference: [10] Köthe G.: Topologische Lineare Räume.Springer, 1960. MR 0130551
Reference: [11] Kunen K., Vaughan J.E.: Handbook of Set-Theoretic Topology.North-Holland, 1984. Zbl 0674.54001, MR 0776619
Reference: [12] Kuratowski K.: Topology.vol I., Academic, 1966. Zbl 0849.01044, MR 0217751
Reference: [13] Miller A.W.: On the length of Borel hierarchies.Ann. Math. Logic 16 (1979), 233-267. Zbl 0415.03038, MR 0548475
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-2_19.pdf 256.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo