Title:
|
Boundary value problems for higher order ordinary differential equations (English) |
Author:
|
Majorana, Armando |
Author:
|
Marano, Salvatore A. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
35 |
Issue:
|
3 |
Year:
|
1994 |
Pages:
|
451-466 |
. |
Category:
|
math |
. |
Summary:
|
Let $f : [a,b] \times \Bbb R^{n+1} \rightarrow \Bbb R$ be a Carath'{e}odory's function. Let $ \{t_{h}\} $, with $t_{h} \in [a,b]$, and $\{x_{h}\}$ be two real sequences. In this paper, the family of boundary value problems $$ \cases x^{(k)} = f \left( t,x,x',\ldots ,x^{(n)} \right) \ x^{(i)}(t_{i}) = x_{i} \,, \quad i=0,1, \ldots , k-1 \endcases \qquad (k=n+1,n+2,n+3,\ldots ) $$ is considered. It is proved that these boundary value problems admit at least a solution for each $k \geq \nu$, where $\nu \geq n+1$ is a suitable integer. Some particular cases, obtained by specializing the sequence $\{t_{h}\}$, are pointed out. Similar results are also proved for the Picard problem. (English) |
Keyword:
|
higher order ordinary differential equations |
Keyword:
|
Nicoletti problem |
Keyword:
|
Picard \newline problem |
MSC:
|
34A12 |
MSC:
|
34B10 |
MSC:
|
34B15 |
idZBL:
|
Zbl 0809.34034 |
idMR:
|
MR1307273 |
. |
Date available:
|
2009-01-08T18:12:31Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118686 |
. |
Reference:
|
[1] Abramowitz M., Stegun I.A.: Handbook of Mathematical functions with Formulas, Graphs, and Mathematical Tables.Dover Publ., New York, 1972. MR 0208797 |
Reference:
|
[2] Agarwal R.P.: Boundary Value Problems for Higher Order Differential Equations.World Sci. Publ., Singapore, 1986. Zbl 0921.34021, MR 1021979 |
Reference:
|
[3] Bernfeld S.R., Lakshmikantham V.: An Introduction to Nonlinear Boundary Value Problems.Academic Press, New York, 1974. MR 0445048 |
Reference:
|
[4] Bernstein S.N.: Sur les fonctions régulierèment monotones.Atti Congresso Int. Mat. Bologna 1928, vol. 2 (1930), 267-275. |
Reference:
|
[5] Bernstein S.N.: On some properties of cyclically monotonic functions.Izvestiya Akad. Nauk SSSR, Ser. Mat. 14 (1950), 381-404. MR 0037885 |
Reference:
|
[6] Bonanno G., Marano S.A.: Higher order ordinary differential equations.Differential Integral Equations 6 (1993), 1119-1123. MR 1230485 |
Reference:
|
[7] Miranda C.: Istituzioni di Analisi Funzionale Lineare - I.Unione Matematica Italiana, 1978. |
Reference:
|
[8] Piccinini L.C., Stampacchia G., Vidossich G.: Ordinary Differential Equations in $\Bbb R^n$ (Problems and Methods).Springer-Verlag, New York, 1984. Zbl 1220.68090, MR 0740539 |
Reference:
|
[9] Schoenberg I.J.: On the zeros of successive derivatives of integral functions.Trans. Amer. Math. Soc. 40 (1936), 12-23. MR 1501863 |
Reference:
|
[10] Whittaker J.M.: Interpolatory Function Theory.Stechert-Hafner Service Agency, New York, 1964. MR 0185330 |
Reference:
|
[11] Zwirner G.: Su un problema di valori al contorno per equazioni differenziali ordinarie di ordine $n$.Rend. Sem. Mat. Univ. Padova 12 (1941), 114-122. MR 0017834 |
. |